Curriculum

For

Bachelor of Biomedical Engineering Technology

Degree

(2023)

Higher Education Commission Islamabad Curriculum Division

Acronyms, Abbreviations & Definitions

Acronym/ Abbreviation	Definition	
HEC	Higher Education Commission	
NTC	National Technology Council	
NCRC	National Curriculum Review Committee	
IDEE	Integration of Data in Engineering Environment	
IEA	International Engineering Alliance	
IDTE	Inter Disciplinary Technology Elective	
MATLAB	Matrix Laboratory	
HEI	Higher Education Institution	
RIC	Resistance, Inductance, Capacitance	
IEEE	Institute of Electrical and Electronics Engineers	
SIT	Supervised Industrial Training	
LTI	Linear Time-Invariant System	
ВЈТ	Bipolar Junction Transistor	
MOSFET	Metal–Oxide–Semiconductor Field-Effect Transistor	
IGBT	Insulated-Gate Bipolar Transistor	
Th	Theory	
Lab	Laboratory	
Cr. Hrs.	Credit Hours	
PLO	Program Learning Outcome	
CLO	Course Learning Outcome	
ІСТ	Information and Communications Technology	
OSI	Open Systems Interconnection	
LAN	Local Area Network	
WAN	Wide Area Network	

MAN	Metropolitan Area Network
RMS	Root Mean Square
Hb	Hemoglobin
СВС	Complete Blood count
WBC	White Blood Cells
рН	Potential of Hydrogen
TLC	Thin-Layer Chromatography
HPLC	High Performance Liquid Chromatography
DNA	Deoxyribonucleic acid
RNA	Ribonucleic acid
АТР	Adenosine Triphosphate
OGTT	Oral Glucose Tolerance Test
ODEs	Ordinary Differential Equations

Contents

1.		Introduction	1
2.		Curriculum Development Methodology	2
	2.1	Benchmarking	2
	2.2	Curriculum Development Cycle	2
	2.3	Historical Timeline of Meetings	2
3.		Curriculum Details	3
4.		Admission Criteria	8
5.		Semester-wise Scheme of Studies	9
6.		Course Codes	.13
7.		Elective Courses	.14
8.		Course Contents	.15
	8.1	Basic Biology	.16
	8.2	Basic Mathematics	.17
	8.3	Communication Skills	.18
	8.4	Islamic Studies/Social Ethics	.19
	8.5	Applied Physics	20
	8.6	Information and Communication Technology	22
	8.7	Workshop Practices	24
	8.8	Technical Drawing	25
	8.9	Calculus and Analytical Geometry	26
	8.10	Basic Electrical Technology	27
	8.11	Human Anatomy & Physiology	29
	8.12	2 Computer Programming	30
	8.13	3 Management Sciences Elective-I	.31
	8.14	Social Sciences Elective-I	.31
	8.15	5 Biochemistry	.31
	8.16	5 Linear Algebra & Differential Equations	33
	8.17	zElectrical Circuit Analysis	34
	8.18	B Digital Logic Design	35
	8.19	Social Sciences Elective-II	36
	8.2	o Signals and Systems	36
	8.2	Electronic Devices and Circuits	38

8.22	Microprocessors and Microcontrollers	
8.23	Biomechanics	40
8.24	Molecular Biology	
8.25	Management Sciences Elective-II	
8.26	Biomaterials	
8.27	Biomedical Instrumentation	
8.28	Biomedical Control Systems	
8.29	Pakistan Studies	
8.30	Technical Report Writing	
8.31	Project-I	
8.32	Medical Imaging Devices	51
8.33	Probability & Statistics	
8.34	Clinical Laboratory Equipment	
8.35	Inter Disciplinary Technology Elective-I	
8.36	Inter Disciplinary Technology Elective-II	
8.37	Project-II	
8.38	Management Sciences Elective-III	
8.39	Depth Elective-I	
8.40	Depth Elective-II	
8.41	Depth Elective-III	
8.42	Troubleshooting of Medical Devices	
8.43	Depth Elective-IV	
8.44	Biomedical Signal Processing	57
8.45	Biotelemetry System	
8.46	Medical Device Quality System and Standards	60
8.47	Medical Device Regulatory Affairs	61
8.48	Power Electronics	
8.49	Medical Robotics	64
8.50	Rehabilitation Techniques	
8.51	Tissue Engineering Technology	
8.52	Drug Delivery Systems	
8.53	Artificial Intelligence	
8.54	Bioinformatics	

	8.55	Medical Image Processing	73
	8.56	Hospital Information System	75
	8.57	Professional Ethics	
	8.58	Organizational Behavior	77
	8.59	Critical Thinking	
	8.60	Professional Psychology and Human Behavior	
	8.61	Fundamentals of Economics	81
	8.62	Entrepreneurship	
	8.63	Project Management	
	8.64	Principles of Marketing	
9.	Superv 9.1 Ba	rised Industrial Training ckground	85 85
	9.2 Ol	ojectives:	
	9.3 Re	esponsibility of HEI: Placement in SIT Program	85
	9.4 Re	esponsibilities of Students:	
	9.5 Tr	aining Progress Assessment and Review by HEI	86
	9.6 Cł	nanging Student Placement During SIT	
	9.7 Da	ily Training Logbook	
	9.8 In	dustrial Training Report	
	9.9 Gi	udelines for Preparation of Industrial Training Report	
	9.10 S	IT Assessment	
	9.11 C	ompletion of Industrial Training	90
AP	PEND	IX A: Sydney Accord Knowledge and Attitude Profile	91
AP	PEND	IX B: Engineering Technologist Graduate Attribute Profile	92
AP	PEND	IX C: Engineering Technologist Professional Competence Profile	94
	APPEN	NDIX D: Minutes of Preliminary Meeting of NCRC	
AP	PEND	IX E: Minutes of the Final Meeting of NCRC	101
AP	PEND	IX F: Supervised Industrial Training Logbook (Sample Format)	104
AP	PEND	IX G: Supervised Industrial Training Report (Sample Format)	105

1. Introduction

Curriculum is the total learning experience of a student that occurs in the educational process. The term refers specifically to a planned sequence of instruction, and to the student's experiences in terms of the educator's or institutions instructional goals. Curriculum is a systematic and intended packaging of competencies (i.e., knowledge, skills, and attitudes, underpinned by values) that learners should acquire through organized learning experiences.

Curriculum forges in learners' life-long learning competencies, as well as social attitudes and skills, such as tolerance and respect, constructive handling of diversity, peaceful conflict management, promotion and respect of Human Rights, gender equality, justice, and inclusiveness. At the same time, curriculum must be singularly aligned to national development goals, and produce human resources that becomes an effective factor of production in the economy.

Curriculum is thus the foundation on which rests the edifice of academic programs designed for focused outcomes that equip graduates with desired skill sets. Engineering technology curriculum aims to produce proficient engineering technology graduates who meet demands of both national and international job markets. The curriculum conforms substantially to the Sydney Accord – the international accreditation body regulating local accrediting institutions of partnering countries -- and is in consonance with the essence of Graduates Attributes and Professional Competence defined by International Engineering Alliance (IEA). [See Appendix A through C]

Curriculum is developed and reviewed by HEC's National Curriculum and Review Committee (NCRC).

2. Curriculum Development Methodology

2.1 Benchmarking

Curriculum for Biomedical Engineering Technology is benchmarked to HEC's Undergraduate Policy and in accordance with NTC Curriculum Framework. It conforms substantially to the standards laid out by the Sydney Accord and the International Engineering Alliance pertaining to engineering technology programs [See Appendix A through C].

The course of studies clearly defines and differentiates the program from Biomedical Engineering by contact hours spent in classrooms, laboratories, and industry.

Ideally an engineering program is designed with classroom to practical training ratio of 70:30 contact hours with emphasis on design aspects. Whereas for engineering technology programs, the ratio of contact hours is reversed to 30:70, providing more opportunity for hands on and psychomotor training.

2.2 Curriculum Development Cycle

Curriculum development is a rigorous process and entails the following steps:

- Nominations are requested from academic circles and relevant industry forums to constitute a National Curriculum Review Committee (NCRC) comprising of leading national experts.
- From the nominations received, NCRC is finalized and notified by NTC(HEC).
- To run affairs smoothly, right at the start NCRC Members elect from among themselves a Coordinator, a co-Coordinator, and a Secretary to steer, control and record proceedings.
- Preliminary Meeting of NCRC spanning three days is held to establish framework and benchmarking issues and assign different facets of curriculum development to smaller teams within the NCRC.
- A draft of program curriculum is prepared by NCRC at the end of the Preliminary Meeting and sent to relevant foreign experts for review and feedback.
- After foreign expert's review, a Final NCRC Meeting lasting up to three days is held to finalize the recommendations and prepare final curriculum document.
- The entire cycle of curriculum development is completed in two months.

2.3 Historical Timeline of Meetings

Historical Timeline of meetings carried out in this context are enlisted below:

- Preliminary Meeting of NCRC [See Appendix D]
- Final Meeting of NCRC [See Appendix E]

3. Curriculum Details

Γ

		Framework - A	Framework - B
Parameter	HEC Framework	(SIT in Semester 7 & 8)	(SIT in Semester 8 Only)
Program Type	Semester System	Semester System	Semester System
Program Duration	8 Semesters Min: 4 Years Max: 7 Years	8 Semesters Min: 4 Years Max: 7 Years	8 Semesters Min: 4 Years Max: 7 Years
Semester Duration	16 weeks of Teaching 2 weeks for Exams	16 weeks of Teaching 2 weeks for Exams	16 weeks of Teaching 2 weeks for Exams
Total Number of Courses	41	38	43**
Engineering Technology Domain Courses	28	24	28 ^{**}
Non-Engineering Technology Domain Courses	13	14	15**
Total Credit Hours	124 – 136	133	133
Engineering Technology Domain Credit Hours	85	93	90
Percentage of Engineering Technology Domain Courses	74.42%	69.90%	67.67%
lon-Engineering Technology Domain Credit Hours	39	40	43
Percentage of Non- Engineering Technology Domain Courses	25.58%	30.10 %	32.33 %
No. of Credit Hours per Semester	15 – 18	15 – 18	15 – 18

1 credit hour:

(1) 1 contact hour per week, for a minimum of 16 weeks for theory: (2) 3 contact hours per week, for a minimum of 16 weeks for practical's

Engineering Technology Domain Courses in							
	Recommended Schemes of S	Studies as p	er Frame	work Total Credit Hours		Number of Courses	
Knowledge Area	Name of Course	Credit Hours (Th+Lab)	Contact Hours (Th+Lab)	As per Scheme of Studies	As per Framework	As per Scheme of Studies	As per Framework
C ommittee	Information and Communication Technology	1+1=2	1+3=4	6	c.		2
Computing _	Computer Programming	1+1=2	1+3=4	6	6	2	3
	Workshop Practices	0+1=1	0+3=3				
Biomedical Engineering	Technical Drawing	0+1=1	0+3 =3				
Technology	Basic Electrical Technology	2+1=3	2+3 =5	10	18	5	9
(Foundation)	Human Anatomy & Physiology	3+1=2	3+3=6	10	18	5	9
Ī	Electrical Circuit Analysis	2+1=3	2+3=5				
Biomedical	Digital Logic Design	2+1=3	2+3=5				
Engineering	Signals and Systems	2+1=3	2+3=5	18	11	6	4
Technology	Biomechanics	2+1=3	2+3=5				
(Breadth)	Molecular Biology	2+1=3	2+3=5				
-	Biomaterials	2+1=3	2+3=5				
-	Biomedical Instrumentation	2+1=3	2+3=5				
	Microprocessors and Microcontrollers	2+1=3	2+3=5				
Biomedical	Biomedical Control Systems	2+1=3	2+3=5				
Engineering	Medical Imaging Devices	2+1=3	2+3=5	22	14		-
Technology	Clinical Laboratory Equipment	2+1=3	2+3=5	22	14	9	5
(Depth)	Troubleshooting of Medical Devices	0+1=1	0+3=3				
	Depth Elective-I	2+1=3	2+3=5				
F	Depth Elective-II	2+1=3	2+3=5				

	Depth Elective-III	2+1=3	2+3=5				
	Depth Elective-IV	3+0=3	3+0=3				
IDEE	IDTE-I	3+0=3	3+0=3	F	-	2	2
IDEE	IDTE-II	2+1=2	2+3=5	5	5	2	2
Senior Design	Project Part-I	0+3=3	0+9=9	c	6	2	2
Project	Project Part-II	0+3=3	0+9=9	6 6		2	Z
Training	Supervised Industrial Training-(Opt.)	0+16=16	0+16=16	16**		0	
	Supervised Industrial Training	0+16=16	0+16=16	16 0		0	
Total Credit Hours and Courses (For Engineering Technology Domain Courses)		93	43+149= 192	99-92 26-2		-25	
	** Optional Courses may be included for F	ramework B	(SIT in Seme	ester 8 d	only)	1	

	Recom	mended Schemes of St	udies as per	⁻ Framewo	ork				
						Total Credit Hours		nber ourses	
Knowledge Area	Sub-Area	Name of Course	Credit Hours (Th+Lab)	Contact Hours (Th+Lab)	As per Scheme ofStudies	As per Framework	As per Scheme ofStudies	As per Framework	
	English	Communication Skills	3+0=3	3+0=3					
	(Expository Writing)	Technical Report Writing	2+0=3	3+0=3	6	6	2	2	
Humanities and Social Sciences	Culture	Islamic Studies / Social Ethics	3+0=3	3+0=3	6	6	2	2	
		Pakistan Studies	3+0=3	3+0=3					
	Social Sciences	Elective-I	3+0=3	3+0=3	c	0	2		
	Electives	Elective-II	3+0=3	3+0=3	6	9	2	3	
	Management	Elective-I	3+0=3	3+0=3					
Management Sciences	Sciences	Elective-II	2+0=2	2+0=2	5	6	2	2	
		Basic Mathematics*	3+0=3	3+0=3		6	3/4*	3	
Natural Sciences	Math (Quantitative Reasoning)	Calculus and Analytical Geometry	3+0=3	3+0=3	8/11*				
		Linear Algebra & Differential Equations	3+0=3	3+0=3					
		Probability and Statistics	2+0=2	2+0=2					
	Biology	Basic Biology**	2+1=3	2+3=5	3**/0	3	0/1**	1	
	Physics	Applied Physics	3+1=4	3+3=6	4	4	1	1	
	Chemistry	Biochemistry Forced Elective	2+1=3	2+3=5	3	3	1	1	
		redit Hours and Courses				I		L	
• ** for Pre-	 * for Pre-Medical students ** for Pre-Engineering students ** Optional Courses may be included for Framework B (SIT in Semester 08 only) 					Cr. Hrs. 41/47		Courses 13 /15	

List of Elective Topics				
Social Sciences	Management Sciences			
Professional Ethics	Fundamentals of Economics			
Sociology for Technologist	Project Management			
Critical Thinking	Entrepreneurship			
Organizational Behavior	Principles of Marketing			
Professional Psychology and Human Behavior	Leadership and Personal Grooming			
Elective Courses by HEI*	Elective Courses by HEI*			
Natural Science	s*			
Biomedical Signal Processing				
Biotelemetry System				
Medical Device Quality System and Standards				
Medical Device Regulatory Affairs				
Power Electronics				
Medical Robotics				
Rehabilitation Techniques				
Tissue Engineering Technology				
Drug Delivery Systems				
 Artificial Intelligence 				
Bioinformatics				
Medical Image Processing				
 Hospital Information System 				
Elective Courses by HEI*				

4. Admission Criteria

Criteria for admission in Bachelor of Biomedical Engineering Technology program is defined in NTC's Accreditation Manual, Clause 3.2.4.1. Salient features for eligibility for admission are:

- 1. At least 50% marks in DAE/FSc (Pre-engineering) or other equivalent qualifications such as A-levels/ICS/B.Sc. (sports and Hafiz-e-Quran marks are not counted), and
- 2. Entrance Test
- 3. Weighted average score for admission is calculated by:
 - 70% for academics (DAE/FSc etc.)
 - 30% for Entrance Test

5. Semester-wise Scheme of Studies

Semester-wise scheme of studies for Bachelor of Biomedical Engineering Technology program spanning 4 years, spread over 8 semesters, and totaling 129 credit hours is presented below:

SEMESTER I							
Suggested Course Codes	Course Title	Knowledge Area/Domain	Credit Hrs. (Th+Lab)	Contact Hrs. (Th+Lab)			
BIN-111/ BIN-112	Basic Biology (for Pre-Engineering Students)/ Basic Mathematics (for Pre-Medical Students)	Natural Sciences	2+1 or 3+0	2+3 or 3+0			
BIH-111	Communication Skills	Humanities	3+0	3+0			
BIH-112 BIH-113	Islamic Studies/Social Ethics	Humanities	3+0	3+0			
BIN-113	Applied Physics	Natural Sciences	3+1	3+3			
BIC-111	Information & Communication Technology	Computing	1+1	1+3			
BIT-111	Workshop Practices	Foundation	0+1	0+3			
BIT-112	Technical Drawing	Foundation	0+1	0+3			
	Subto	tal	12+5 = 17 or 13+4 = 17	27 or 24			
	1	SEMESTER-II					
BIN-121	Calculus and Analytical Geometry	Natural Sciences	3+0	3+0			
BIT-121	Basic Electrical Technology	Foundation	2+1	2+3			
BIT-122	Human Anatomy & Physiology	Foundation	3+1	3+3			
BIC-121	Computer Programming	Computing	1+1	1+3			
BIM-121	Management Sciences Elective I	Management Sciences	3+0	3+0			
BIS-121	Social Sciences Elective I	Social Sciences	3+0	3+0			
	Subtotal	13+3 =16	15+3 =18	24			

	SEMESTER-III								
Course Codes	Course Title	Knowledge Area	Credit Hrs. (Th+Lab)	Contact Hrs. (Th+Lab)					
BIN-211	Biochemistry	Natural Sciences Forced Elective	2+1	2+3					
BIN-212	Linear Algebra & Differential Equations	Natural Sciences	3+0	3+0					
BIT-211	Electrical Circuit Analysis	Foundation	2+1	2+3					
BIT-212	2 Digital Logic Design Breadth		2+1	2+3					
BIS-211	-211 Social Sciences Elective II Social Sciences		3+0	3+0					
	Sub	12+3=15	21						
		SEMESTER-IV							
BIT-221	Signals and Systems	Breadth	2+1	2+3					
BIT-222	Electronic Devices and Circuits	Foundation	2+1	2+3					
BIT-223	Microprocessors and Microcontrollers	Depth	2+1	2+3					
BIT-224	Biomechanics	Breadth	2+1	2+3					
BIT-225	Molecular Biology	ogy Breadth		2+3					
BIM-221	Management Science Elective II	Management Sciences	2+0	2+0					
	Sub	ototal	12+5 =17	27					

	SE	MESTER-V		
Course Codes	Course Title	Knowledge Area	Credit Hrs. (Th+Lab)	Contact Hrs. (Th+Lab)
BIT-311	Biomaterials	Breadth	2+1	2+3
BIT-312	Biomedical Instrumentation	Breadth	2+1	2+3
BIT-313	Biomedical Control Systems	iomedical Control Systems Depth		2+3
BIH-311	Pakistan Studies	Pakistan Studies Humanities		3+0
BIE-311	Technical Report Writing	Humanities	2+0	2+0
BIT-314	Project-I	Project	0+3	0+9
	Subtota	9+8 =17	29	
	SEI	MESTER-VI		
BIT-321	Medical Imaging Devices	Depth	2+1	2+3
BIN-321	Probability and Statistics	Natural Sciences	2+0	2+0
BIT-322	Clinical Laboratory Equipment	Depth	2+1	2+3
BII-321	IDTE-I	IDTE	3+0	3+0
BII-322	IDTE-II	IDTE	2+1	2+3
BIT-323	Project-II	Project	0+3	0+9
	Subtota	al	11+6 =17	29

	SEN	AESTER-VII		
Course Codes	Course Title	Knowledge Area	Credit Hrs. (Th+Lab)	Contact Hrs. (Th+Lab)
ELT-411	Supervised Industrial Training (Optional)	Biomedical Engineering Technology Domain Industrial Training	16	40 (per Week)
BIH-411 BIM- 411	Management Sciences Elective-III	Management Sciences	3+0	3+0
BIT-412	Depth Elective-I	Depth	2+1	2+3
BIT-413	Depth Elective-II	Depth	2+1	2+3
BIT-414	Depth Elective-III	Depth	2+1	2+3
BIT-415	Troubleshooting of Medical Devices	Depth	0+1	0+3
BIT-416	Depth Elective-IV	Depth	3+0	3+0
	Subto	tal	12+4=16	24
	SEN	1ESTER-VIII		
BIT-421	Supervised Industrial Training (Compulsory)	Biomedical Engineering Technology Domain Industrial Training	16	40 (per Week)
	Subto	tal	0+16= 16	0+40= 40
Total Credit Hours & Contact Hours in Four Years (When SIT conducted in both 7th and 8th Semester)				64+195=259
Theory vs Practical with respect to Contact Hours			Theory Practical	64 (24.71%) 195 (75.29%)
	Total Credit Hours & Contact Hour		75+54=129	75+162=237
	Theory vs Practical with respect to	Contact Hours	Theory Practical	75 (31.65%) 162 (68.35%)

6. Course Codes

Details pertinent to course codes are presented below:

- Each course has a unique three letter prefix, followed by three-digit code
- Letters are acronyms for course description, and numbers define the chronological position in the academic year, and sequence number in the program.
- Program will span over 4 years, with 2 semesters per year, Spring and Fall (with possible inclusion of Summer Semester).

Digits in course-codes are defined in table below:

1st Digit	2nd Digit	3rd Digit	
Denotes Year (1,2,3,4)	Denotes Semester (1,2,3)	Denotes Sequence (1, 2, 3)	

Letters in course-code prefix are defined below:

- First two letters pertain to the program (e.g., BI for Biomedical)
- Third letter pertains to specifics of the course (e.g., T for technology, E for expository writing etc.)

Sr.	Course Code Prefix	Description	
1	ВІТ	Biomedical Engineering Technology Foundation/ Breadth/ Depth	
2	BIE	Expository Writing	
3	BIH	Art & Humanities	
4	BI S	Social Sciences	
5	BIQ	Quantitative Reasoning	
6	BIN	Natural Sciences	
7	BIC	Computing	
8	BI M	Management Sciences	
9	BII	Inter Disciplinary Technology Elective	

7. Elective Courses

	Elective Depth Courses				
Course	Title	Knowledge Area	Credit	Contact	
Code	nue	Kilowieuge Area	Hrs.	Hrs.	
			2+1	2+3	
BIT-412	Medical Image Processing	Depth Elective-I	or	or	
			3+0	3+0	
			2+1	2+3	
BIT-413	Biotelemetry System	Depth Elective-II	or	or	
			3+0	3+0	
			2+1	2+3	
BIT-414	Biomedical Signal Processing	Depth Elective-III	or	or	
			3+0	3+0	
	Madical Davias Quality Systems and Standards		2+1	2+3	
BIT-415	Medical Device Quality System and Standards	Depth Elective-IV	or	or	
			3+0	3+0	
	Medical Device Regulatory Affairs		2+1	2+3	
BIT-416	Medical Device Regulatory Analis	Depth Elective-V	or	or	
			3+0	3+0	
	Power Electronics	Depth Elective-VI	2+1	2+3	
BIT-417			or 3+0	or 3+0	
			2+1	2+3	
BIT-418	Medical Robotics	Depth Elective-VII	or	or	
511 410			3+0	3+0	
			2+1	2+3	
BIT-419	Rehabilitation Techniques	Depth Elective- VIII	or	or	
			3+0	3+0	
			2+1	2+3	
BIT-4110	Tissue Engineering Technology	Depth Elective-IX	or	or	
			3+0	3+0	
			2.1	2.2	
BIT-4111	Drug Delivery Systems	Donth Floctive IV	2+1	2+3	
DII-4111	Drug Delivery Systems	Depth Elective-IX	or 3+0	or 3+0	
			510	510	
			2+1	2+3	
BIT-4112	Artificial Intelligence	Depth Elective-IX	or	or	
			3+0	3+0	
			2+1	2+3	
BIT-4113	Bioinformatics	Depth Elective-IX	or	or	
			3+0	3+0	
			2+1	2+3	
BIT-4114	Hospital Information System	Depth Elective-IX	or	or 210	
			3+0	3+0	

8. Course Contents

Primary goal of this curriculum is to be substantially in compliance with international standards set by relevant agencies such as the International Engineering Alliance and the Sydney Accord.

Program Learning Objectives (PLO's), Course Learning Objectives (CLO's) and Bloom's Taxonomy Levels are expected learning outcomes and are aligned to standards set by the Sydney Accord and the International Engineering Alliance.

Course Content 8.1 Basic Biology

	CREDIT & CONTACT HOURS (2+1) 32 Theory+16 Lab	KNOWLEDGE AREA/ DOMAIN	
Basic Biology (For Pre-Engineering students)		Natural Sciences	
After cc	ourse completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Understand biology of living organisms.	C-2	1
CLO-2	Explain the working principles of nucleic acids (DNA and RNA) with respect to human body.	C-2	2
CLO-3	Use basic laboratory equipment to analyze cell biology.	P-3	1
	Course Outline for Theory		
	Course Outline for Lab		
1. Methodology of A			
 Observance of Ce Identification of C Benedicts Test 	autoclave for Sterilization Il division in Onion Root Tip arbohydrate Molisch Test		
 Observance of Ce Identification of C Benedicts Test Iodine Test Osazon Test Identification of P Ninhydrin Test 	ll division in Onion Root Tip Farbohydrate Molisch Test roteins		
 Observance of Ce Identification of C Benedicts Test Iodine Test Osazon Test Identification of P Ninhydrin Test Xanthoproteic Test Isolation of Choles Protein Denaturat Determination of 	II division in Onion Root Tip arbohydrate Molisch Test roteins st sterol from Egg Yolk tion Test		
 Observance of Ce Identification of C Benedicts Test Iodine Test Osazon Test Identification of P Ninhydrin Test Xanthoproteic Test Isolation of Cholest Protein Denaturation 	II division in Onion Root Tip arbohydrate Molisch Test roteins st sterol from Egg Yolk tion Test		
 Observance of Ce Identification of C Benedicts Test Iodine Test Osazon Test Identification of P Ninhydrin Test Xanthoproteic Test Isolation of Choles Protein Denaturat Determination of Chromatography 	II division in Onion Root Tip arbohydrate Molisch Test roteins st sterol from Egg Yolk tion Test		

CODE & TITLE CREDIT & CONTACT HOURS KNOWLEDGE AREA/ DOMAIN (BIN-112) (3+0)**Basic Mathematics** 48 Theory+0 Lab **Natural Sciences** (For Pre-Medical students) Bloom's After course completion students will be able to: Taxonomy PLO Level Apply elementary knowledge of linear algebra to address CLO-1 C-3 1 mathematical problems. Solve different mathematical problems using knowledge of 2 CLO-2 C-3 calculus and analytical geometry. **Course Outline for Theory**

Complex Numbers: Properties of complex numbers: Conjugates and modulus: Geometrical representation of complex numbers: Quadratic Equations & Cube Roots: Roots of a quadratic equation (real: distinct: equal and imaginary roots): Formation of quadratic equation when the roots are given: Cube Root of Unity: Properties of cube root of unity: Matrices: Properties: sum: difference and multiplication of matrices: Cramer's rule: Solution of linear equations of three unknowns: Determinants: Properties: addition: subtraction and multiplication of determinants: Sequence and series: Arithmetic progression: Standard forms of an arithmetic progression: Arithmetic means: Geometric progression: Standard forms of a geometric progression: Sum of Infinite geometric series: Geometric means: Harmonic progression: Harmonic means: Relation between H.M.: A.M. and G.M.: Binomial Expansion: Expansion of type (a+b)ⁿ for positive integer of 'n': Use of the general term and determine the middle term or terms of the expansion: Partial Fractions: Resolve into partial fractions: Proper and improper fraction: Functions: One-one function: Onto function: Even function: Odd function: Exponential function: Trigonometric function: Logarithmic function: Circular Measure: Understand the definition of radians and use the relationship between radians and degrees: Trigonometric Functions: Basic functions e.g. sine: cosine: tangent etc. relation between them: Trigonometric identities: sum and difference formulae: multiple angle formulae: Inverse functions: Differential Calculus: Basic concepts: limits: exponential functions: differentiation of exponents and trigonometric functions: Integral Calculus: Basic integration: rules of integration: integration of exponential and trigonometric functions: integration by parts: integration using substitution: Analytical Geometry: Lines: midpoint: equation of lines: angles and sections

Recommended Book

1. Precalculus: Mathematics for Calculus, James Stewart, Lothar Redline and Saleem Watson, Cengage Learning (Latest Edition)

2. Mathematics for A Levels, CGP Books (Latest Edition)

Course Content 8.2 Basic Mathematics

Course Content 8.3 Communication Skills

(3+0) 48 Theory+ 0 Lab	Human	REA/ DOMAIN nities
completion students will be able to:	Bloom's Taxonomy Level	PLO
Understand the importance of written and spoken communication.	A-3	10
Add value to communication as a team member.	A-3	9
Course Outline for Theory	I	
l	48 Theory+ 0 Lab completion students will be able to: Understand the importance of written and spoken communication. Add value to communication as a team member.	48 Theory+ 0 Lab Huma completion students will be able to: Bloom's Taxonomy Level Understand the importance of written and spoken communication. A-3 Add value to communication as a team member. A-3

communication: communicate effectively in job interviews.

Recommended Books

- 1. Practical English Grammar, A. J. Thomson and A. V. Martinet, Oxford University Press. (Latest Edition)
- 2. Practical English Grammar Exercises 1, A. J. Thomson and A. V. Martinet, Oxford University Press (Latest Edition)
- 3. A Practical Guide to Business Writing: Writing in English for Non-Native Speakers, Khaled Mohamed Al Maskari, Wiley (Latest Edition)
- 4. Communication Skills for Engineers, Sunita Marshal and C. Muralikrishna (Latest Edition)
- 5. The Essentials of Technical Communication, Elizabeth Tebeaux and Sam Dragga, Oxford University Press (Latest Edition)
- 6. College Writing Skills, John Langan (Latest Edition)
- 7. Exploring the World of English, Saadat Ali Shah, Ilmi Kitab Khana (Latest Edition)

Course Content 8.4 Islamic Studies/Social Ethics

CODE & TITLE (BIH-112) (BIH-113) Islamic Studies/Social Ethics	CREDIT & CONTACT HOURS (3+0) 48 Theory + 0 Lab	KNOWLEDGE AREA/ DOMA Humanities	
After cour	se completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Understand the Holy Quran, Hadith, and the life of the Holy Prophet (Peace be upon Him).	C-2	8
CLO-2	Demonstrate the knowledge of sciences as described in the Holy Quran.	C-3	6
	Course Outline for Theory		

History of Islam: Compilation of the Holy Quran and Hadith: Fundamental doctrines of Islam i.e.: Tawheed: oneness of Allah: Prophet hood: the day of Judgment: Revealed books: Ibadaat (worship) Philosophy of Ibadaat: Namaz: Zakat: Hajj &Sawm: Importance of preaching of Islam: its needs and effects: Difficulties in the ways of preaching of Islam: sectarianism: its causes and effects in Muslim society: definition of Right: classification of Right: importance of Rights: Khutba Hajjat-ul-Wida (last address of the Holy Prophet: Peace be upon him): Seeratun-Nabi (Peace be upon him).

Life of the Holy Prophet (Peace be upon him): The life of the Holy Prophet before and after prophet hood. The Hijra (Migration to Madina), Treaty of Al Madina, Makki and Madani life of Holy Prophet Muhammad (Peace be upon him), importance of peace and causes of terrorism.

Islam and Civilization: Definition of civilization: Impacts of Islamic civilization on the Sub-continents: international impacts of Islamic civilization: Impacts of Human thoughts: social and humanistic effects: Importance of Ethics: Human rights (HoqooqUIIbad) with detail.

Importance of Knowledge in Islam: Definition of Knowledge: Classification of knowledge: Importance of technology in the light of Holy Quran and Sunnah: relevant verses of the Holy Quran about Technology (Baqara 28:30:33:201: Nahal:76: Jasia: 13: Araf: 32: Noor: 55 etc): Islamic and scientific knowledge.

Recommended Books

- 1. A Guidebook for Muslims, Syed. Abul Hasan Ali Nadvi (Latest Edition)
- 2. An Introduction to Islam, Dr. Muhammad Hameedullah (Latest Edition)
- 3. What is Islam? Maulana Manzoor Nomani (Latest Edition)
- 4. Islamiat (A standard book for CSS), Prof. Dr. ArifNaseem (Latest Edition)
- 5. Islamiat for Students O levels, Farkhanda Noor Muhammad (Latest Edition)

Course Content 8.5 Applied Physics

CODE & TITLE (BIN-113) Applied Physics	CREDIT & CONTACT HOURS (3+1) 32 Theory + 16 Lab	KNOWLEDGE AREA/ DOMA Natural Sciences	
After	course completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Comprehend the laws of physics related to electrostatics and construction of capacitors.	C-2	2
CLO-2	Apply knowledge of electromagnetism and construct inductors.	C-3	2
CLO-3	Describe basic laws of mechanics pertaining to force and motion.	C-2	1
CLO-4	Trace basic principles used in mechanics, electrostatics and electromagnetism using the available laboratory equipment.	P-3	2

Course Outline for Theory

Electric charge: Conductors and insulators: Coulomb's law: Electric field: Field due to a point-charge Electric dipole and line of charge: Flux of an electric field: Permittivity of a medium: Gauss's law: Application of Gauss's Law:

Electric potential: calculating the potential from electric field: Potential due to a point-charge and a group of point-charges. Potential due to a dipole: Potential due to a continuous charge distribution:

Capacitors: calculating capacitance: Capacitors in series and parallel: Factors affecting capacitance: Application of Capacitors:

Current and Conductors: Electric current and current density: Resistance and resistivity: Ohm's law: The Steady Magnetic Field: Resistors in series and parallel: Temperature dependence of resistance and other factors affecting resistance: Application of resistors: The magnetic field: Magnetic force on a current carrying conductor: Torque on a current-loop

Magnetic field due to current: Force between two parallel current-carrying conductors: Biot Savart law and its applications: Ampere's law: Inductance and inductors: Factors affecting inductance Permeability Faraday's law of induction: Lenz's law: Energy stored in a magnetic field: Self-induction: Mutual Induction: Magnets and magnetic materials: Di-magnetic material: Para-magnetic material: Ferromagnetism. Concepts of Rest and motion: Force and friction: Work Energy and power: Momentum and law of conservation of momentum.

Course Outline for Lab

- 1. To investigate the properties of series combination of Capacitors
- 2. To determine the given resistance by leakage method using ballistic Galvanometer
- 3. To study the variation of Photoelectric current with intensity of incident beam
- 4. To determine the temperature coefficient of resistance of coil by wheat stone bridge
- 5. To study Ohm's law
- 6. To investigate the properties of Series Combination of Resistances
- 7. To investigate the properties of Parallel combination of Resistances
- 8. Practical Demonstration of Ampere Law
- 9. Practical Demonstration of Faraday Law
- 10. To demonstrate the function of transformer as Step Up and Step-Down Transformer

Recommended Books

- 1. Halliday, Resnick and Walker, "Fundamentals of Physics" (Latest Edition)
- 2. Hugh D. Young and R.A. Freedman, University Physics. (Latest Edition)
- 3. Raymond A Serway and John W. Jawett, Jr. Physics for Scientists and Engineers with modern Physics, (Latest Edition)
- 4. Fundamentals of Electromagnetic Phenomenon by D. Corson & Lorrain. (Latest Edition)

Course Content 8.6 Information and Communication Technology

CODE & TITLE	· · · · · · · · · · · · · · · · · · ·			
(BIC-111) Information and	(1+1) 16 Theory+16 Lab	Computing		
Communication Technology				
After cour	se completion students will be able to:	Bloom's Taxonomy Level	PLO	
CLO-1	Describe major components of computer hardware and software.	C-2	1	
CLO-2	Demonstrate the concepts of data communication and networks.	C-3	1	
CLO-3	Demonstrate the working of hardware components of computer.	P-4	1	
CLO-4	Practice MS Office applications.	P-3	1	
	Course Outline for Theory	1		
engineering technology: Basic (storage Basic components: Ha information: how computers r World Wide Web- browsers: H Embedded System: Application networks: Common types of ne Hierarchy of Data: Maintaining	s: Basic Definitions: Computer and Communication Technolo Operations and Components of a Generic Computer System: ardware: Software: Data: Users: types of storage devices: represent and process data: Processing Devices: CPU archite TML: URLs/ How DNS works: Email and other programs: Intro- ns: Components: Programming Languages: Popular Developr etworks (LAN: WAN: MAN etc.): Introduction to OSI Model: Fo g Data: Database Management Systems: Exposure to ICT Toc s Security Concepts: threats to users: threats to hardware: th	Basic operations: Input: Processing Data: Trans octures: The Internet: The oduction to Embedded S nent Platforms: Network uture of Networks: Data ols and Blogs: Protecting	Processing: output sforming data into the Internet and the systems: What is an king Basics: Uses o base Management	
	Course Outline for Lab			
		lia, checking your Email.		

- 8. Writing small HTML codes.
- 9. Introduction to web designing.
- 10. Introduction to web designing (cont.)
- 11. Introduction to programming languages.
- 12. Introduction to programming languages (cont.)

Recommended Books

- 1. "Introduction to Computers", Peter Norton, McGraw-Hill (Latest Edition)
- 2. "Computing Essentials", Timothy O'Leary and Linda O'Leary, McGraw-Hill (Latest Edition)
- 3. Using Information Technology: A Practical Introduction to Computers & Communications", Williams Sawyer, McGraw-Hill (Latest Edition)
- 4. "Discovering Computers, Complete: Your Interactive Guide to the Digital World. Cengage Learning" Shelly GB, Vermaat ME (Latest Edition)

Course Content 8.7 Workshop Practices

CODE &	& TITLE	CREDIT & CONTACT HOURS	KNOWLEDGE	AREA/ DOMAIN
(BIT-1	L11)	(0+1)		
Workshop	Practices	16 Lab Sessions	Foundation	
			Bloom's	
	After	course completion students will be able to:	Taxonomy	PLO
			Level	
CLO	-1	Use safety equipment during workshop practice.	P-3	7
CLO	-2	Participate in workshop activities individually as well as in a group.	A-2	9
		Course Outline for Lab		
 4. Appli 5. Exerce 6. Vario 7. Safet 8. Electe 9. Use of 10. Wirin 11. Types scher 12. Draw 13. Wirin 14. Volta 15. Electe 	cation of Sm ise in bendii us technical y regulation ric shocks, a of tools used g regulation s of cables a natics e.g., s ing and prace g schemes of ge and curre ric soldering	ng, Upsetting, and swaging facilities in the workshop including mechanical and electrical equ s and Earthing concepts nd treatment by electricians	uses etc., symbols fo	
		Recommended Books		
		"Elements of Workshop Technology", (Latest edition)		

2. Chapman, "Workshop Technology", (Latest edition)

Course Content 8.8 Technical Drawing

CODE & TITLE (BIT-112)	CREDIT & CONTACT HOURS (0+1)	KNOWLEDGE AREA/ DOMAI	
Technical Drawing	16 Lab Sessions		Computing
After course completion students will be able to:		Bloom's Taxonomy Level	PLO
CLO-1	Recognize basic tools and shapes of Engineering Drawing.	C-1	1
LO-2	Understand basic principles of Engineering Drawing Tools for representation of Engineering Drawing Models.	C-2	1
CLO-3	Practice Engineering Drawing Principles to draw 2-D & 3D sketches using modern tools.	P-3	5
	Course Outline for Lab	·	

Electrical Drawing: Electrical safety drawings: electric substation equipment layout: schematic diagrams of substations: lighting and power distribution boards in contrast with house and industrial wiring diagrams: electrical symbols and one-line diagrams of a typical power system and its parts using all details: 2D modelling using AutoCAD: Layering using AutoCAD: 3D Wireframe Modelling in AutoCAD: 3D Solid modelling in AutoCAD: Helical Spring using AutoCAD: 3D Surface Modeling: Open Ended Lab

Recommended Books

1. Mitchel & Spencer, "Technical Drawing" (Latest Edition)

2. Choudhry, "Elements of Workshop Technology" Volume –I. (Latest Edition)

3. Chapman, "Workshop technology" Part-I, II, & III. (Latest Edition)

Course Content 8.9 Calculus and Analytical Geometry

CODE & TITLE (BIN-121) Calculus and Analytical Geometry	CREDIT & CONTACT HOURS (3+0) 48 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Natural Sciences				
After course completion students will be able to:		Bloom's Taxonomy Level	PLO			
CLO-1	Discuss basic equations, graphical sketches of different functions, limits, and continuity.	C-3	1			
CLO-2	Solve problems by applying techniques of differentiation and integration.	C-3	2			
CLO-3	Analyze vector calculus and analytical geometry in multiple dimensions for the investigation of different engineering technology problems.	C-4	4			
	Course Outline for Theory					
Basics: Basic definition of der	vivative: differentiation of different function: rule of different	rentiation: chain ru	le implicit differentiation			
Applications: slope: equation	of tangent and normal, maxima, minima and point of inf	lection				
Integration: Indefinite integr fraction: integration of differ	ral: different techniques of integration i.e., integration bench trigonometric identity	oy parts: integratic	on by substitution: by partia			
	n of definite integral: i.e.: Area under the curve. Area be e of solid revolution Disk and Washer method: moment a					
Vector Spaces: Vector in spaces: Vector Spaces: Vector in spaces: Spherical: polar:	ce: vector calculus: Divergence: curl of vector field: Direc cylindrical coordinates	tional derivatives:	multivariable function Partia			
Vectors in Planes: Dot produtriangle: Area of parallelogra	ict and cross products: line and plane in space. Applicat m etc.	ion: work: angle b	etween two vectors: Area o			
	Recommended Books					
2. Calculus, Early Trans	nas, A. R. Finney, Pearson Education (Latest Edition) scendental, H Anton, I C Bivens and S Davis, John Wiley (I ames Stewart (Latest Edition)	atest Edition)				

4. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley (Lated Edition).

Course Content 8.10 Basic Electrical Technology

CODE & TITLE (BIT-121) Basic Electrical Technology	CREDIT & CONTACT HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/DOMAIN	
Basic Electrical Technology	SZ THEOLÝ + 10 LAD SESSIONS	Foundation	
After co	ourse completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Define the concepts of fundamental electrical quantities, electromagnetism, and electrostatics.	C-1	1
CLO-2	Describe the relationship between line and phase voltage, and relationship between line and phase current in three-phase circuits of star and delta connections.	C-2	1
CLO-3	Demonstrate the construction, working & applications of electrical machines.	C-3	2
CLO-4	Operate AC/DC machines to determine various characteristics.	P-3	2
CLO-5	Appropriately exhibit the practical findings.	A-3	10
	Course Outline for Theory		
time-period: frequency: ampl Star and Delta connections: Ir <i>DC Machines</i> : Constructional methods of speed control. <i>AC Machines</i> : Single – phase production of torque: speed of <i>Transformer:</i> Constructional of	n of alternating current and voltage: equations of alternating cu tude: phase: phase difference: root mean square (RMS) value: ave istantaneous and Average Power Complex Power: Maximum Powe details: principle of operation: back e.m.f: production of torque e machines: types: characteristics and applications: three – pha ontrol.	rage value: form fact er Transfer: Power Fa e: types: characterist	or: power fact ctor. ics: applicatio
regulation: losses and efficien	details: principle of operation: e.m.f equation: phasor diagrams or cy; open circuit and short circuit tests: auto transformers: instrum		quivalent circi
regulation: losses and efficien			quivalent circu

- 8. Efficiency of a single phase transformer.
- 9. Effect of field excitation on generation of voltage by a generator.
- 10. Voltage regulation of three phase generator.

Recommended Books

- 1. B.L.Theraja, A.K.Theraja A textbook of Electrical Technology, Vol. 2, S. Chand & Co. (Latest Edition)
- 2. Edward-Hughes- Electrical Technology. (Latest Edition)
- 3. Mehta V.K- Principles of Electrical Engineering and Electronics, S.Chand& Co. (Latest Edition)
- 4. Partab Art and Science of Utilization of Electric Energy: Dhanpath Rai & Sons. (Latest Edition)

Course Content 8.11 Human Anatomy & Physiology

CODE & TITLE (BIT-122) Human Anatomy & Physiology	CREDIT & CONTACT HOURS (3+1) 48 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Foundation	
After cou	rse completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Define basic cells tissue and organ of the human body system.	C-1	1
CLO-2	Explain the relationships among the bones, muscles, joints, and tissues.	C-2	1
CLO-3	Illustrate the respiratory system, cardiovascular system, alimentary system, and urinary system.	C-3	2
CLO-4	Work on different laboratory machines (BP apparatus: Sphygmomanometer, Hematology analyzers, ECG machine).	P-3	4
CLO-5	Document practical findings in form of reports.	A-3	10

Course Outline for Theory

Cell: Tissue: Organ: Organelles: Organ System: Basic Cell Structure: Plasma: The Blood Cell: Pressure: Flow And Resistance: Heartbeat Coordination: Mechanical Events of the Cardiac Cycle: The Cardiac Output: Measurement of Cardiac Function: Connective Tissue: Bones: Muscle and Joints (Structure & Types) Basic Anatomy and Physiology of Skeletal System: Nervous System: Respiratory System: Cardiovascular System: Digestive System and Urinary System. Homeostatic Mechanisms and Cellular Communication: Sensory and Neural Control Mechanism (Basic). Hormonal functions in Man and Women.

Course Outline for Lab

- a. Safety precaution in performance and operation of Basic Medical laboratory Apparatus
- b. Examining the basic Histological slides (Cell, Tissue)
- c. Analysis of blood samples (CBC, Hemoglobin (Hb), WBC.)
- d. Examination of Bleeding Time, Coagulation Time, and Blood groups
- e. Determination of Tidal volume and Demonstration of Artificial Respiration
- f. Recording of Arterial Pulse, Recording of Arterial Blood Pressure and Electro-cardiogram
- g. Isolation and separation of blood components through Centrifuge machine

Recommended Books

- 1. Snell, "Clinical Anatomy for Medical Students" (Latest Edition)
- 2. Gerard J. Tortora, Principles of Anatomy and Physiology, (Latest Edition)
- 3. Ellis, horlad, Clinical Anatomy, A Revision and applied Anatomy for Clinical Students (Latest Edition)
- 4. Frederic H Martini Human Anatomy, et al. (Latest Edition)

Course Content 8.12 Computer Programming

CODE & TITLE (BIC-121) Computer Programming	CREDIT & CONTACT HOURS (1+1) 16 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Computing				
After cours	e completion students will be able to:	Bloom's Taxonomy Level	PLO			
CLO-1	Apply knowledge of programming language to solve real-world problems effectively.	C-3	1			
CLO-2	Write and compile computer programs and troubleshoot for errors.	P-4	2			
	Course Outline for Theory					
while, do-while), Iteration (do- to functions. 1. Introduction to a pro 2. Arithmetic operation 3. Conditional statemen	ts	•				
 Repetitive statement Functions Recursion Arrays- one dimensio Sorting algorithms Arrays – 2 dimension Strings Graphical User Interfation Object Oriented Prog Open ended Lab(s) 	nal al aces (GUIs)					
	Recommended Books					
 Python crash course: A hands-on, project-based introduction to programming, Matthes, Eric, No Starch Press (Latest Edition) Learning python: Powerful object-oriented programming, Lutz, Mark, O'Reilly Media Inc. (Latest Edition) C++ How to Program, Deitel & Deitel, Prentice Hall (Latest Edition) Problem Solving with C++, Walter Savitch, Addison Wesley (Latest Edition) Java, Paul J Deitel and Harvey M Deitel, Pearson Press (Latest Edition) 						

Course Content

8.13 Management Sciences Elective-I

CODE & TITLE (BIM-121) Management Sciences Elective-I CREDIT & CONTACT HOURS (3+0) 48 Theory + 0 Lab Sessions KNOWLEDGE AREA/ DOMAIN

Management Sciences

The course (with outline, CLO's etc.) to be offered by HEI from amongst the list of elective courses defined in this Curriculum. The HEI must ensure adequacy of academic and other resources for the course.

Course Content 8.14 Social Sciences Elective-I

CODE & TITLE	CREDITS HOURS:	KNOWLEDGE
(BIS-121)	(3+0)	AREA/DOMAIN
Social Sciences Elective-I	48 Theory + 0 Lab Sessions	
		Social
		Sciences

Course Content

8.15 Biochemistry

CODE & TITLE (BIN-211) Biochemistry	CREDIT & CONTACT HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Natural Sciences Forced Electives	
After course co	mpletion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Comprehend knowledge of biochemistry and macro-molecules.	C-1	1
CLO-2	Compare metabolic pathways for diagnosis of metabolites in human body.	C-4	2
CLO-3	Investigate the structure and activity of biomolecules at cellular level.	f C-4	
CLO-4	Conduct experiments for the detection of biomolecules.	f P-3	
CLO-5	Demonstrate amino acid separation using chromatographic methods.	P-4	1
	Course Outline for Theory		

Course Outline for Theory

Introduction to Biochemistry: Colloidal state, buffer, pH, significance of pH Henderson equation, surface tension, viscosity, osmosis, diffusion, Biological Membrane and chromatographic techniques (TLC, Paper, HPLC)

Carbohydrates, their metabolism and energy cycles (Glycolysis, gluconeogenisisetc), Lipids, types and their metabolism and Proteins, Amino acids and their metabolism.

Bioenergetics: DNA & RNA and role of ATP for biological energy transfer, thermodynamics of life, Micromolecules and traces elements.

Course Outline for Lab

- 1. Preparation of solution in laboratory
- 2. Determination of pH by pH meter and Litmus paper
- 3. Demonstration the action of buffer
- 4. To determine the principal application of Hander son- Haselbash's equation
- 5. Tests for proteins
- 6. Examination of egg white
- 7. Color reactions for proteins
- 8. Isolation of Casein from milk
- 9. Tests on carbohydrates
- 10. Measurement of Blood Glucose level with help of spectrophotometer
- 11. Oral Glucose Tolerance Test (OGTT)
- 12. Tests of Lipid profile by chemical analyzer
- 13. Separation of Amino Acids by chromatographic methods.
- 14. Open Ended Lab I
- 15. Open Ended Lab II
- 16. Open Ended Lab III

- 1. Biochemistry (Lippincott's illustrated reviews series), Richard A Harvey and Denise R Ferrier (Latest Edition)
- 2. Modern experimental biochemistry, Boyer, Rodney, Pearson Education, (Latest Edition)
- 3. Principles of Biochemistry, Lehninger, W.H Freeman and Co, (Latest Edition)
- 4. Fundamentals of Biochemistry, Donald Voet and Judith G. Voet,, (Latest Edition)

Course Content 8.16 Linear Algebra & Differential Equations

CODE & TITLE (BIN-212) Linear Algebra & Differential Equations	CREDIT & CONTACT HOURS (3+0) 48 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Natural Sciences	
After course c	ompletion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Describe various operations on matrices to solve systems of linear equations.	C-2	1
CLO-2	Apply linear transformations and matrix theory to model real-life situations.	C-3	1
CLO-3	Describe differential equations, solutions of first and higher orders, homogeneous and non- homogeneous differential equations by appropriate methods.	C-2	2
CLO-4	Apply basic concepts of linear algebra and differential equations to solve elementary electrical, mechanical, and thermal engineering technology problems.	C-3	2

System of linear equations: row reduction and echelon forms: vector equations: the linear matrix equation. Solution sets of linear systems: applications of linear systems. Concept of matrices: types of matrices: operation on matrices i.e.: addition: subtraction: multiplication: properties of matrix operation: the elementary row operation: echelon form: solution of linear system of equation by gauss elimination method: concept of consistent and inconsistent solution: polynomial interpolation. inverse of matrix using Gauss-Jordon method. Determinant of matrix: definition and properties of determinants and their theorem: concept of singular and nonsingular matrix: solution of non-homogenous linear system of equation using Cramer's rule. Introduction to linear transformation: daily life application i.e.: cryptography example coding and decoding the messages: computer graphics etc.

Basic concept of differential equation: i.e.: Definition: order: degree: and geometric meaning of differential equation. Solution of First order Differential Equations: Separable equations: Exact Differential Equation: integrating Factor: Linear Ordinary Differential Equations (ODEs). Second and higher order Differential Equation: Homogenous linear ODE with constant coefficient: Cauchy Euler Equation: Non homogenous Equation by undetermined coefficient: by variation of parameter and similar higher order Differential Equations. Finding Laplace and inverse Laplace of different functions: S- shifting theorem: solution of differential equation using Laplace transform. Basic concept of power series: Radius of convergence: convergence interval: using power series method to find the solution of Differential Equation.

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley (Latest Edition)
- 2. Introductory Linear Algebra, Bernard Kolman (Latest Edition)
- 3. Linear Algebra and its Applications, Gilbert Strang (Latest Edition)
- 4. Linear Algebra and Its Applications, D C Lay, S R Lay and J J McDonald, Pearson Education (Latest Edition)

Course Content 8.17 Electrical Circuit Analysis

CODE & TITLE (BIT-211) Electrical Circuit Analysis	CREDIT & CONTACT HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLI AREA/ DC Founda	DMAIN
After course co	mpletion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Understand the concepts of electric circuits with DC & AC sources.	C-2	1
CLO-2	Analyze the transient and steady-state response of 1 st order and 2 nd order electric circuits .	C-4	2
CLO-3	Understand and implement circuits in the S-domain.	C-3	2
CLO-4	Demonstrate knowledge of constructing electric circuits using hardware or software.	P-2	5
CLO-5	Exhibit practical findings in form of reports.	A-3	10
	Course Outline for Theory		
and parallel combination of circ divider rule. Analysis Methods: transfer theorem. RL: RC (1st ord Steady-State Analysis: Average a matching: power in AC circuits: i	urrent: voltage: power: energy: and sources; circuit suit elements. Circuit Laws and Rules: Ohm's law: k Nodal analysis: mesh analysis: source transformatio er) Circuits: Natural and step response. RLC (2nd ord and RMS values of signals: the phasor: admittance: i nductive coupling and transformers. Laplace Transfor uit analysis in S-domain: transfer functions: frequence	Kirchhoff's laws: voltage div on: linearity and superposit er) Circuits: Natural and ste mpedance: AC analysis me orm; Step and impulse funct	vider rule and current tion: maximum power p response. Sinusoida thods: resonance: and tions: applying Laplace
	Course Outline for Lab		
2. Design and implement	is in electrical circuit analysis i.e., function generator different electrical circuits using different laws. ations using lab instruments. ie and analyze circuits.	rs power supplies, oscillosco	opes, etc.
	Recommended Books		
1. W Hayt, J Kemmerly an	d S Durbin, "Engineering Circuit Analysis", McGraw-	Hill, (Latest Edition).	

2. Nilsson and Riedel, "Electric Circuits", (Latest Edition).

- 3. Robert L. Boylestad, "Introductory Circuit Analysis", (Latest Edition).
- 4. C Alexander and M Sadiku, "Fundamentals of Electric Circuits", McGraw- Hill, (Latest Edition)
- 5. J D Irwin and R M Nelms, "Basic Engineering Circuit Analysis", Wiley, (Latest Edition)
- 6. R E Thomas, A J Rosa and G J Toussaint, "The Analysis and Design of Linear Circuits", John Wiley, (Latest | Edition)

8.18 Digital Logic Design

		8.10 Digital Logic Design	l .	
	CODE & TITLE	CREDIT & CONTACT HOURS	KNOWLEDGE AREA	/ DOMAIN
Die	(BIT-212) gital Logic Design	(2+1) 32 Theory + 16 Lab Sessions	Breath	
	After course	completion students will be able to:	Bloom's Taxonomy Level	PLO
	CLO-1	Understand fundamental concepts used in design of digital systems.	1 C-2 1	
	CLO-2	Analyze the working of combinational and sequential logic circuits using digital logic principles and Boolean algebra.	C-4	2
	CLO-3	Apply principles of digital systems to design solutions for Broadly Defined Problems.	C-3	3
	CLO-4	Execute small-scale digital circuits using Boolean algebra and K-maps for sustainable solutions.	P-4	7
	CLO-5	Carryout experiments, using contemporary tools, under the supervision of instructors.	P-3	5
		Course Outline for Theory		
function optimum for NAN network sequent	ns: Tabular Minimizat n set of prime implica ID and NOR networks <s: introduction="" sec<="" th="" to=""><th>connectives: Digital computer examples: Boolean Alg ions. Cubical representation of Boolean functional: Do nts: Design of NAND and NOR networks and properties : Comparator: decoders: encoders: multiplexers and d quential Networks: Latches: Sequential networks in fun- ization of the number of states: Clocked network</th><th>etermination of prime implica of combinational networks: Sv emultiplexers. Transient respondamental mode: Introduction</th><th>nts: Selection of an vitching expressions onse of combination o to the synthesis of</th></s:>	connectives: Digital computer examples: Boolean Alg ions. Cubical representation of Boolean functional: Do nts: Design of NAND and NOR networks and properties : Comparator: decoders: encoders: multiplexers and d quential Networks: Latches: Sequential networks in fun- ization of the number of states: Clocked network	etermination of prime implica of combinational networks: Sv emultiplexers. Transient respondamental mode: Introduction	nts: Selection of an vitching expressions onse of combination o to the synthesis of
		Course Outline for Lab		
1.	To study basic logic a	Course Outline for Lab		
2.	To design a half add			
3.	To design a full adde			
4. 5		ment 4-bit adder using logic gate ICs		
5. 6.		ment 4-bit subtractor using logic gate ICs ation of BCD to 7-segment decoder		
0. 7.		nous and asynchronous counter using J K flip flops		
8.		onal circuits using multiplexer and demultiplexer		
9.	-	the operations of RS and Clocked RS Flip-Flop and D F	-lip-Flop	
		the operations of JK and Master-Slave JK Flip-Flop and		
		ment 8 bits added on FPGA		
		ment BCD to seven segment decoders on FPGA		
12.	To design and imple	ment BCD to seven segment decoders on FFGA		

- 1. Morris Mano and Charles R. Kime, "Logic and Computer Design Fundamentals", Prentice Hall
- 2. Tocci and Widmer, "Digital Systems: Principles and Applications"

	8.19 Social Sciences Electiv	e-ll
CODE & TITLE	CREDIT & CONTACT HOURS	KNOWLEDGE AREA/DOMAIN
(BIS-211)	(3+0)	
Social Sciences Elective-II	48 Theory + 0 Lab Sessions	Social Sciences
he course (with outline, CLO	's etc.) to be offered by HEI from amongst the I	ist of elective courses defined in this

Course Content 8.20 Signals and Systems

CODE & TITLE (BIT-221) Signals and Systems	CREDIT HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/DOMAIN Breadth		
After course completion students will be able to:		Bloom's Taxonomy Level	PLO	
CLO -1	Apply operations on signals like shifting, time-reversal, convolution, and scaling.	C-3	1	
CLO-2	Analyze signals and systems in frequency domain.	C-3	2	
CLO-3	Investigate stability and causality of systems described by differential equations/difference equations using methods such as Z-transform.	C-4	4	
CLO-4	Perform experiments related to analysis of signals and systems.	P-3	5	
CLO-5	Operate proficiently MATLAB/Python to perform tasks such as: matrix manipulation, generating and plotting, load/save data, small programs.	P-4	5	

Course Outline for Theory

Basic Signals: unit impulse sequence, step sequence, complex exponential sequence. Signal operations include time-shifting, scaling, time-reversal. System properties include linearity, causality, time-invariance, and stability. Implementation of discrete time-systems using convolution expression. Spectral representation of periodic and aperiodic signals using Fourier series and Fourier transform. Frequency response of an LTI system. Transformation techniques for signals. Analysis of stability and causality of discrete-time systems characterized by difference equations. Understanding of tradeoffs involved in the design of FIR and IIR filters and design of digital filters in MATLAB/Python. Overview of basic biomedical signals like ECG, EEG, EMG.

Course Outline for Lab

- 1. Introduction to MATLAB/Python
- 2. Writing programs using conditional statements, loops and efficient implementation using vectorization of code
- 3. Plotting signals
- 4. Basic Signal Generation
- 5. Symbolic toolbox for performing integration, differentiation, Fourier transform computation.
- 6. Implementing LTI system using difference equation/convolution operation

- 7. Transformation techniques
- 8. Frequency domain analysis of signals
- 9. Frequency domain analysis of systems
- 10. Filter design
- 11. Open Ended Lab

- 1. Signal Processing First, James H. McClellan, Ronald Schafer, and Mark Yoder. Latest Edition, Pearson
- 2. An Oppenheim, A Willsky and H Nawab, "Signals and Systems" Pearson, Latest Edition
- 3. Simon Haykin and Barry Van Veen, "Signals and Systems" Wiley, Latest Edition

8.21 Electronic Devices and Circuits

	5.21 Electronic Devices and Cit				
CODE & TITLE	CREDIT & CONTACT HOURS	KNOWLEDGE AR	EA/ DOMAIN		
(BIT-222)	(2+1)				
Electronic Devices and	32 Theory + 16 Lab Sessions	ons Foundation	ition		
Circuits					
	completion students will be able to	Bloom's Taxonomy	N O		
Alter course	completion students will be able to:	Level	PLO		
	Apply the concept of semiconductor diode and				
CLO-1	use it for various applications to solve circuits.	C-3	1		
	Analyze the working principles and				
	characteristics of the different transistors for		2		
CLO-2	various source configurations and biasing	C-4	2		
	techniques.				
	Demonstrate and analyze different electronic				
CLO-3	circuits and practice transistor's operations to	P-4	4		
	achieve desired outputs.				
	Perform the lab task in a group team				
CLO-4	environment with minimal direction of instructor.	A-2	9		
	Course Outline for Theory				
	unction: Diode Characteristics curve: Resistances in D	-			
	ve Rectifier: Diode Switching Circuit: Clippers: Clamper	-	-		
	nverter: Transistor types: Zener Diode: LED: Laser Dioc		ield Effect Transistors:		
JFET: JFET current source: JFE	T Analog switch: JFET Biasing: MOSFET types & configu	ration.			
	Course Outline for Lab				
1. Investigate the electr	ical characteristics of Diodes, BJT and FET.				
-	ion, and measurements of electronic circuits for differe	ent applications.			
3. Zener diode regulato					
4. Biasing in BJT and FE	Г				
5. Small signal amplifier	s in BJT and FET				
6. Amplifiers using lab e	equipment and computer simulation tools.				
	Recommended Books				
1. Electronic Devices an	d Circuit Theory, H. Boylestad and L. Nashelsky, (Lates	t Edition)			
	nomas L. Floyd, (Latest Edition)				
	, Alberto P Malvino(Latest Edition)				
-	By B.L Theraja and A.K Theraja(Latest Edition)				
	effrey S. Beasley, Guillermo Rico, "Electronic devices a	nd circuits", (Latest Editior	n)		

Course Content

8.22 Microprocessors and Microcontrollers

CODE & TITLE	CREDIT & CONTACT HOURS	KNOWLEDGE AREA	/ DOMAIN	
(BIT-223)	(2+1) 22 The second state of the Second			
Microprocessors and Microcontrollers	32 Theory + 16 Lab Sessions	Depth	h	
When occurrents		Bloom's Taxonomy		
After o	ourse completion students will be able to:	Level	PLO	
CLO-1	Explain basic knowledge, features, and operation of contemporary microcontroller and microprocessor.	C2	1	
CLO-2Explain different internal architectures and applic of Microprocessor and Microcontroller.		C2	1	
CLO-3	Apply assembly language programming to analyze different blocks of the Microprocessor/Microcontroller.	C3	2	
CLO-4	Imitate experiments using development kits, ICs and simulation software.	P2	5	
CLO-5	Reproduce the skills of Programming Arduino processor in C++.	P2	5	
ardware model, read/write ntroduction to PIC/Atmel 8	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS e cycles, exception/interrupt processing, I/O devices, DMA, inte 051. Introduction to microcontrollers; architecture and program	erfacing to memory and	I/O devices.	
ardware model, read/write ntroduction to PIC/Atmel 8	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS e cycles, exception/interrupt processing, I/O devices, DMA, inter	erfacing to memory and	I/O devices.	
ardware model, read/write ntroduction to PIC/Atmel 8 nstructions, Program Contro	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS e cycles, exception/interrupt processing, I/O devices, DMA, inte 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts	erfacing to memory and	I/O devices.	
ardware model, read/write ntroduction to PIC/Atmel 8 nstructions, Program Contro 1. Introduction to deve	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS e cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab	erfacing to memory and	I/O devices.	
ardware model, read/write ntroduction to PIC/Atmel 8 nstructions, Program Contro 1. Introduction to deve 2. Development of diff 3. Learn to read datash	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS c cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab Hopment kit of any microcontroller erent applications for microcontroller kit. heets/manuals in order to develop practical applications.	erfacing to memory and	I/O devices.	
ardware model, read/write ntroduction to PIC/Atmel 8 nstructions, Program Contro 1. Introduction to deve 2. Development of diff 3. Learn to read datash 4. Assembly and C lan	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS c cycles, exception/interrupt processing, I/O devices, DMA, inte 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab clopment kit of any microcontroller erent applications for microcontroller kit. neets/manuals in order to develop practical applications. guage-based microcontroller (PIC or Raspberry Pi)	erfacing to memory and nming, Arithmetic Instru	I/O devices. ctions, Logic	
ardware model, read/write ntroduction to PIC/Atmel 8 nstructions, Program Contro 1. Introduction to deve 2. Development of diff 3. Learn to read datash 4. Assembly and C lan	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS c cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab Hopment kit of any microcontroller erent applications for microcontroller kit. heets/manuals in order to develop practical applications.	erfacing to memory and nming, Arithmetic Instru	I/O devices. ctions, Logic	
 Introduction to PIC/Atmel 8 instructions, Program Contro Introduction to deve Development of diff Learn to read datash Assembly and C lan Interfacing for inter interfacing. 	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS c cycles, exception/interrupt processing, I/O devices, DMA, inte 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab clopment kit of any microcontroller erent applications for microcontroller kit. neets/manuals in order to develop practical applications. guage-based microcontroller (PIC or Raspberry Pi)	erfacing to memory and nming, Arithmetic Instru , communication ports, A	I/O devices. ctions, Logic	
 Introduction to PIC/Atmel 8 instructions, Program Contro Introduction to deve Development of diff Learn to read datash Assembly and C lan Interfacing for inter interfacing. 	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab clopment kit of any microcontroller erent applications for microcontroller kit. neets/manuals in order to develop practical applications. guage-based microcontroller (PIC or Raspberry Pi) rupt and data-based applications involving LED/ LCD, GPIO ports	erfacing to memory and nming, Arithmetic Instru , communication ports, A	I/O devices. ctions, Logic	
 Introduction to PIC/Atmel 8 instructions, Program Contro Introduction to deve Development of diff Learn to read datash Assembly and C lan Interfacing for inter interfacing. Project can be input 	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab clopment kit of any microcontroller erent applications for microcontroller kit. neets/manuals in order to develop practical applications. guage-based microcontroller (PIC or Raspberry Pi) rupt and data-based applications involving LED/ LCD, GPIO ports voltage-based speed control of DC Motor / stepper motor using P	erfacing to memory and nming, Arithmetic Instru , communication ports, A	I/O devices. ctions, Logic	
 Introduction to PIC/Atmel 8 Instructions, Program Contro Introduction to deve Development of diff Learn to read datasi Assembly and C lan Interfacing for inter interfacing. Project can be input Douglas V. Hall, "Mi 8051 Microcontrolle 	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS e cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab elopment kit of any microcontroller erent applications for microcontroller kit. heets/manuals in order to develop practical applications. guage-based microcontroller (PIC or Raspberry Pi) rupt and data-based applications involving LED/ LCD, GPIO ports voltage-based speed control of DC Motor / stepper motor using P Recommended Books	erfacing to memory and nming, Arithmetic Instru , communication ports, A WM	I/O devices. ctions, Logic	
 Introduction to PIC/Atmel 8 instructions, Program Contro Introduction to deve Development of diff Learn to read datash Assembly and C lan Interfacing for interinterfacing. Project can be input 1. Douglas V. Hall, "Mi 8051 Microcontrolle (Latest Edition) 	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS e cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program I Instructions, Introduction to Interrupts Course Outline for Lab clopment kit of any microcontroller erent applications for microcontroller kit. neets/manuals in order to develop practical applications. guage-based microcontroller (PIC or Raspberry Pi) rupt and data-based applications involving LED/ LCD, GPIO ports voltage-based speed control of DC Motor / stepper motor using P Recommended Books croprocessor and Interfacing", Tata McGraw-Hill. (Latest edition)	rfacing to memory and nming, Arithmetic Instru , communication ports, A WM	I/O devices. ctions, Logic	
 Introduction to PIC/Atmel 8 Instructions, Program Contro Introduction to deve Development of diff Learn to read datash Assembly and C lan Interfacing for inter interfacing. Project can be input 1. Douglas V. Hall, "Mi 8051 Microcontrolle (Latest Edition) 2. The Intel Microproce 	Course Outline for Theory microprocessors/microcontrollers, instruction set architecture (IS e cycles, exception/interrupt processing, I/O devices, DMA, inter 051. Introduction to microcontrollers; architecture and program Instructions, Introduction to Interrupts Course Outline for Lab elopment kit of any microcontroller erent applications for microcontroller kit. neets/manuals in order to develop practical applications. guage-based microcontroller (PIC or Raspberry Pi) rupt and data-based applications involving LED/ LCD, GPIO ports voltage-based speed control of DC Motor / stepper motor using P Recommended Books croprocessor and Interfacing", Tata McGraw-Hill. (Latest edition) r and Embedded Systems, M. Ali Mazidi, J. Mazidi and R. McKinlay	erfacing to memory and nming, Arithmetic Instru , communication ports, A WM 	I/O devices. ctions, Logic	

Course Content

	Course Content		
CODE & TITLE	8.23 Biomechanics CREDIT & CONTACT HOURS	KNOWLEDGE AREA/	DOMAIN
(BIT-224) Biomechanics	(2+1) 32 Theory+16 Lab Sessions	Breadth	
Afte	r course completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Explain the basic knowledge of moving system mechanics with an overview of anatomical terminology, to understand gross human movements.	C-2	1
CLO-2	Apply the knowledge of human biomechanics to provide solutions to case studies for specific body segments.	C-3	2
CLO-3	Perform experiments under supervision related the kinematics and kinetics of upper and lower limb using hardware and software.	P-3	5
CLO-4	Communicate the results of the experiment effectively in written and oral form.	A-2	10
	Course Outline for Theory		
properties. Density: mass: an Mechanical advantage of musc Spatial reference systems: qu angular velocities: and accelera external forces acting on the l bone tissue: Material constitute	view of statics: Review of Dynamics: Review of deformable bo d inertial properties: Direct measurement of anthropometric le: Multipoint muscles. Forms of motion: Standard reference sys alitative vs. quantitative analysis of human movement: limb-s ation: Tools for direct/indirect measurement of kinematic quant ink-segment model: Joint reaction forces: Direct Force measure ents: Structural organization: Types of bones: Bone growth and ure: stability: and flexibility: common joint injuries: and p	c parameters: Muscle an stems and joint movement egment angles: joint ang ities. Link segment models rements. Composition and development: Bone respo	thropometr terminolog le: linear an : Internal an d structure o onse to stres

musculotendinous unit: Structural organization of skeletal muscle and its function: Muscular force: strength: power: and endurance: Common muscle injuries. Structure: movement and loads of shoulder: elbow: and wrist: Common injuries of upper limb. Structure: movement and loads of hip: knee: ankle: and foot: Common injuries of lower limb. Structure: movement and loading of spine: Common injuries of back and neck. Methods of gait analysis: Gait cycle: Temporal-spatial parameters: Hip: knee and ankle joint kinematics and kinetics: Interpretation of gait data

Course Outline for Lab

- 1. To observe the human skeletal joints and their movement in anatomical reference planes.
- 2. To demonstrate the use of various methods of solving vectors problems in biomechanical analysis
- 3. To investigate the kinetics involved in different types of motion
- 4. To determine the coordinates of the center of gravity (COG) of a body using segmentation method
- 5. To understand the nature of torque and its effects on the body.
- 6. To determine the muscle force required by the biceps while holding a known weight in hand for a range of elbow joint angles using the mechanical arm model.
- 7. To estimate the biomechanical power of an individual using the Sargent Jump test
- 8. To study and test the biomechanical power of an individual using the Vertical Jump test via Jump Mat

- 9. To study and investigate the gait cycle mechanism and collect data on the temporal-spatial parameters of gait for a range of anatomically intact individuals
- 10. To assess the joint flexibility (ROM) and effects of fatigue on ROM using a simple mechanical Goniometer
- 11. To investigate and plot the movement of ideal and practical biomechanical elbow model using MATLAB
- To calculate the lower limb joint angles, joint angular velocity and joint power using raw coordinate data
 Open Ended Lab

- 1. Basic Biomechanics, Susan J. Hall (Latest Edition)
- 2. Biomechanics and Motor Control of Human Movement, David A. Winter, Latest Edition, Jhon Wiley & Sons (Latest Edition)

8.24 Molecular Biology

	8.24 Wolecular	biology	
CODE & TITLE (BIT-225)	CREDIT & CONTACT HOURS (2+1)	KNOWLEDGE AREA/ DOMAIN Breadth	
Molecular Biology	32 Theory + 16 Lab Sessions		
After course compl	etion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Gain basic knowledge of gene structure and organization.	C-1	1
CLO-2	Describe the general principles of gene expression in both prokaryotic and eukaryotic organisms.	C-2	1
CLO-3	Analyze results that are obtained from different experiments.	P-3	4
CLO-4	Communicate results of experiments effectively in written and oral.	A-2	10
	Course Outline for	Theory	
expression: Initiation: elongati DNA damage & repair: homolo Recombinant DNA technology	nylation: Ribosomal RNA processing: Tran ion and termination in prokaryotes and euk ogous meiotic recombination: site specific i r: Polymerase Chain Reaction: Gel Electrop ar pathology of aging: cancer: gene therapy	aryotes: ribosome and transf recombination: transpositior phoresis: Chromatography: L	er RNA: Overview of replication in prokaryotes and eukaryotes abeled tracers DNA sequencing
	Course Outline fo	-	
 To visualize different To examine the bacte To count Prokaryote To prepare the specir To prepare cell pellet To understand phence Extraction of muscle To perform protein ge To explore the site m To retrieve a nucleoti 	Cell Number by Dilution Plating. nens for molecular studies & understand lysis of cells ol extraction & ethanol precipitation proces protein from animal tissues.	resources available on NCBI a ry	and PUBMED.
	Recommended B	ooks	
1. Robert F. Weaver, Mo	blecular Biology, Janice Roerig-Blong Publis	hors (Latost Edition)	
I. RUDELLE. WEAVER, MIC	Sieculai Diology, Janice Roeng-Diolig Publis	iners, (Latest Eultion)	

- 1. Robert F. Weaver, Molecular Biology, Janice Roerig-Blong Publishers, (Latest Edition)
- 2. Stephen R. Bolsover, Jeremy S. Hyams, Elizabeth A. Shephard, Hugh A. White, Claudia G. Wiedemann, Cell Biology, John Wiley & Sons, Inc. Publications, (Latest Edition)

	Course Content		
	8.25 Management Science	s Elective-II	
CODE & TITLE (BIM-221) Management Sciences Elective-II	CREDIT & CONTACT HOURS (2+0) 32 Theory + 0 Lab Sessions		EDGE AREA/DOMAIN ement Sciences
•	e, CLO's etc.) to be offered by HEI from amongst st ensure adequacy of academic and other resou Course Content	rces for the course.	Jefined in this
	8.26 Biomaterial		
CODE & TITLE (BIT-311)	CREDIT & CONTACT HOURS (2+1)		AREA/ DOMAIN
Biomaterials	32 Theory + 16 Lab Sessions	Bre	adth
After course co	npletion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Define the fundamental concepts and principles of biomaterials, their types and structures, characteristics of biomaterials, material fabrication techniques and their testing.	C-1	1
CLO-2	Analyze various materials based on their performance.	C-2	2
CLO-3	Apply knowledge from basic concepts of materials to propose sustainable solution to existing problem.	C-3	7
CLO-4	Participate effectively in lab experiments individually or in small groups.	A-2	9
CLO-5	Perform experiments related to biomaterial and investigate the findings to achieve the desired results.	P-2	4
	Course Outline for Theo	-	
ystalline and non-crystallin ucture: properties: surfac	mpact of Biomaterials: Hard Tissues and Patholo e materials: Crystal imperfections: Metals: types e reactive ceramics and analysis of ceramics su ticulates: fibrous and porous materials: Corros ety and efficacy testing:	: properties: and fabrications urfaces: Polymers: types: pr	s: Introduction to cerami operties: and application
, · · · · · · · · · · · · · · · · · · ·	Course Outline for Lak)	
1 To study methods of			
2. To study methods of			
1. To study methods o	Course Outline for Lak f sample sectioning f mounting)	

3. To study methods of grinding

- 4. To study methods of polishing
- 5. To study method of etching
- 6. To study different microscopic techniques used in metallographic analysis
- 7. To study the degradation behavior in acid and basic media
- 8. To study the degradation behavior in biological fluids
- 9. To do the hardness testing of various biomaterials
- 10. To do the tensile testing of biomaterial
- 11. To study the densification and heat treatment of bio ceramics
- 12. Open-ended labs

- 1. Michael N. Helmus, Biomaterials in the Design and Reliability of Medical Devices (Latest Edition)
- 2. David Hill, Design Engineering of Biomaterials for Medical Devices (Latest Edition)
- 3. Buddy D. Ratner, et al, Biomaterials Science, Second Edition: An Introduction to Materials in Medicine (Latest Edition)
- 4. Kay C. Dee, et al, An Introduction to Tissue-Biomaterial Interactions (Latest Edition)
- 5. Rolando Barbucci, Integrated Biomaterials Science (Latest Edition)
- 6. Materials Science and Engineering: An Introduction, William D. Callister, Jr., David G. Rethwisch (Latest Edition)
- 7. Biomaterials Science: An Introduction to Materials in Medicine, Edited by Buddy D. Ratner (Latest Edition)
- 8. Biomaterials Principles and Application, Joon B. Park, Joseph D. Bronzino (Latest Edition)

8.27 Biomedical Instrumentation

CODE & TITLE (BIT-312)	CREDIT & CONTACT HOURS (2+1)	KNOWLEDGE AREA	DOMAIN
Biomedical Instrumentation	48 Theory + 16 Lab Sessions	Breadth	
After course com	After course completion students will be able to:		PLO
CLO -1	Explain the basic concepts related to the classification techniques and working principles of biomedical equipment.	C-2	1
CLO-2	Demonstrate the use of sensors, transducers, and biopotentials for the design of biomedical applications.	C-3	2
CLO -3	Design operational prototypes using fundamental components for various biomedical applications.	C-5	3
CLO -4	Imitate electronics circuits with microcontroller interface.	P-3	5
CLO -5	Participate effectively in lab experiments individually or in small groups.	A-2	9

Course Outline for Theory

Various forms of bio signals (bioelectric: bio optic: biochemical: biomechanical: bioacoustics): Active and passive transducers: displacement sensors: inductive and capacitive sensors: piezoelectric sensors: temperature sensors: optical sensors: radiation sensors: electro-chemical sensors: bio sensors: fiber optics: Introduction to (medical) instrumentation: accuracy: sensitivity: reproducibility: biocompatibility: classification: measurement constraints: invasive & non-invasive techniques: design criteria: Different types of electrodes (EEG: ECG: EMG: ERG: MEG): Physiological effects of electricity: micro and macro shock hazards: electrical safety codes and standards: basic approaches for protection against shock: protection equipment design: electrical safety analyzers: testing the electric system: testing of electrical appliances. Cardiovascular Devices: Blood Pressure Devices: Pacemaker: Defibrillator: Pulmonary Function Analyzer: Spirometry: Pulse Oximetry: Nebulizer: Capnography: Anesthesia Machine: Ventilators: Heart Lung Machine: Hemodialysis Machine: Patient Monitors: Surgical Theater Devices

Course Outline for Lab

- 1. Introduction to Arduino and IDE
- 2. Interfacing LCD with Microcontroller
- 3. Interfacing Keypad with Microcontroller
- 4. Interfacing Ultrasonic sensor with Microcontroller
- 5. Interfacing Humidity and Temperature sensor with Microcontroller
- 6. Interfacing Flex sensor with Arduino
- 7. Interfacing Reed Switch with Arduino
- 8. Interfacing Magnetic Hall sensor with Microcontroller
- 9. Interfacing Rotary Encoder with Arduino
- 10. Interfacing Infrared Temperature sensor with Arduino
- 11. Interfacing Heart Rate sensor with Microcontroller
- 12. Interfacing Joystick with Arduino
- 13. Open ended lab-I
- 14. Open ended lab-II

- 1. Medical Instrumentation: Application and Design; John Webster; Latest Edition; John Wiley & Sons (Latest Edition)
- 2. Introduction to Biomedical Engineering; John Enderle, Joseph Bronzino; Latest Edition, Academic Press (Latest Edition)
- 3. Introduction to Biomedical Equipment Technology; Joseph J. Carr, John M. Brown; Latest Edition; Pearson (Latest Edition)
- 4. Biomedical Instrumentation: Technology and Applications; Khandpur; Latest Edition; McGraw-Hill Education (Latest Edition)

Course Content 8.28 Biomedical Control Systems

CODE & TITLE (BIT-313)	CREDIT & CONTACT HOURS (2+1)	KNOWLEDGE AREA/	DOMAIN
Biomedical Control Systems	32 Theory + 16 Lab Sessions	Depth	
After course completion students will be able to:		Bloom's Taxonomy Level	PLO
CLO-1	Analyze the response and stability of a control system in time and frequency domains.	C-4	2
CLO-2	Perform simplification of the block diagrams and signal flow graphs for linear time invariant control systems.	C-3	1
CLO-3	Develop , test, debug and correct MATLAB programs using knowledge of control systems.	P-4	5
CLO-4	Design Proportional / Integral / Differential (or in combinations) controller for different closed loop applications.	P-5	3
	Course Outline for Theory		
graphs: Importance of modeling: Modeling of human systems: Pole of first – order: second order and to state space concepts and term Eigenvalues and Eigen vectors: st on steady-state error coefficient	: Open – loop and closed – loop systems and the Formation of differential equations of electrical: n es and zeros of a transfer function: stability: standar higher order systems: Transient response specifica ninology: formation of state and output equations ate – transition and transfer function matrices: Typ s: sensitivity function: Root locus diagrams: Analy itability criterion: Bode plots: Polar plots: Nyquist st	nechanical: electromechanical a dized inputs: steady – state and t ations in time and frequency dor for physical systems: Solution c es and analysis of feedback cont sis and Design of Control System	nd other systems: rransient response nain: Introduction of state equations: rrol systems based ms Based on Root

Application of principles of control theory to analysis of biological system development of computer simulations techniques to study dynamic response of physiological system:

	Course Outline for Lab	
1.	Using MATLAB for control systems	
2.	Modelling of physical systems, linear control system modelling	
3.	LTI Systems, First and Second Order system response	
4.	Computing Nyquist Criteria, root-locus and Bode plots	
5.	PI, PD and PID controllers	
6.	Servo motor control	
	Recommended Books	
1.	S.K. Bhattacharya, Control Systems Engineering (Latest Edition)	
2.	Norman Nice, Control Systems (Latest Edition)	
3.	3. B. Kuo, Automatic Control Systems. (Latest Edition)	
4.	D'Azzo Control System (Latest Edition)	
5.	Shaum Series. Feedback Control System (Latest Edition)	

Course Content 8.29 Pakistan Studies

CODE & TITLE (BIH-311)	CREDIT & CONTACT HOURS KNOWLEDGE AREA/ (3+0)		DOMAIN
Pakistan Studies	48 Theory + 0 Lab Sessions	Humanities	
After course	completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Describe various stages of Pakistan Movement inspired by the need of an ideological state.	C-2	8
CLO-2	Analyze amendments in the constitution of Pakistan made since 1973.	C-4	8
CLO-3	Understand current issues of Pakistan, their causes and solution.	A-4	8
	Course Outline for Theory		
Muhammad Ali Jinnah: Aims Movement in Subcontinent: Law: Constitutional Assembl Constitution (17 th : 18 th : 19 th	I rationale with special reference to Sir Syed Ahmed Kh and objective of the creation of Pakistan. Indus Civilizati Muslim League 1906: Lahore Resolution 1940: 3 rd June y: Nature and Structure of Constitution: Features of and 20 th): Foreign Policy: Objectives: Contemporary Pa y: Determinants of Pakistan Foreign Policy and challeng	ion: Location and Geo-Physical e plan and Independence 1947 1956: 1973 Constitutions. An akistan: Economic institutions	features: Reformis 7: Constitution and mendments in the and issues: Society
	Recommended Books		
 Political Parties in Parties (Latest Edition) 	in Pakistan, Amin, Tahir, Ethno, Islamabad Institute of akistan, Vol. I, II & III, Afzal, M. Rafique, Islamabad Nat		

3. Struggle for Pakistan, Mr. Ishtiaq Hussain Qureshi (Latest Edition)

Course Content

8.30 Technical Report Writing **CODE & TITLE CREDIT & CONTACT HOURS KNOWLEDGE AREA/ DOMAIN** (BIE-311) (2+0) **Technical Report Writing** 32 Theory + 0 Lab Sessions **Humanities Bloom's Taxonomy** After course completion students will be able to: PLO Level Exhibit basic academic and research-CLO-1 A-2 10 based writing skills. Demonstrate formal communication CLO-2 skills, including business letters, CVs, and 10 A-4 minutes of meetings. **Course Outline for Theory** Introduction to technical writing: technical communication process: proposal write-up and improvement strategies: introduction to research and research types: choosing research problems and research advisors: how to carry out research: different parts of technical writing: formulation - problem statement: literature review: design - methodology: analysis - data analysis and interpretation good writing style techniques: uses of correct words: presenting and publishing research: write business/professional correspondence: cover letter and CV: writing meeting minutes: introduction to informal writing: uses of informal reports. **Recommended Books**

1. Technical Report Writing Today, Daniel Riordan (Latest Edition)

2. Technical Writing and Professional Communication, Leslie Olsen and Thomas Huckin (Latest Edition)

3. Communication for Engineering Students, J. W. Davies, (Latest Edition)

4. Science Research Writing for Non-Native Speakers of English, Hilary Glasman-Deal, Imperial College Press (Latest Edition)

Course Content 8.31 Project-I

CODE & TITLE (BIT-314)	CREDIT & CONTACT HOURS (0+3)	KNOWLEDGE /	AREA/ DOMAIN
Project-I	0 Theory + 48 Lab Sessions	Project-I	
After course	completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Identify and apply background knowledge of engineering technology fundamentals for implementation of project ideas and comparison with previous related research.	C-3	1
CLO-2	Analyze problem statements through research and literature review.	C-4	2
CLO-3	Defend the impact of proposed idea in societal and environmental contexts, and demonstrate its efficacy for sustainable development.	C-5	7
CLO-4	Develop a wide range of technical skills by delivering a working prototype using latest design tools that has passed through the design, implementation, testing and evaluation stages.	C-6	3
CLO-5	Integrate the solution of complex engineering technology problems for improvement of society or environment.	A-4	6
CLO-6	Practice and adapt ethical values in various methods .	A-5	8
CLO-7	Demonstrate effectiveness as an individual as well as a team member.	A-4	9
CLO-8	Display communication skills through presentations, technical reports, and poster .	A-5	10
CLO-9	Display the results of hardware components testing.	P-5	5

8.32 Medical Imaging Devices

(BIT-321)	CREDIT & CONTACT HOURS	KNOWLEDGE AREA	A/ DOMAIN
Medical Imaging Devices	(2+1) 32 Theory + 16 Lab Sessions	Depth	
After course con	pletion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Describe the fundamental concepts related to radiation physics involved in various diagnostic imaging modalities.	C-2	1
CLO-2	Analyze working and applications of various diagnostic medical imaging equipment.	C-4	2
CLO-3	Troubleshoot diagnostic radiological equipment.	P-4	4
CLO-4	Read different types of images from DICOM and test image and perform different spatial domain transformation and reconstruction of images in programming software.	P-2	5
imaging: Film-less radiographic	ging systems. Imaging development: X-ray Film: imaging: CT imaging: Emerging areas in medies: imaging archival and management: Molecul	cal imaging: Ultrasound Imag	ing: Medical imaging
techniques and their image man	nulation		
	•		
1 Demonstration of V ray	Course Outline for Lab		
 Intensity Transformatio Spatial Filtrating using N Filtrating in frequency D 	Course Outline for Lab s Equipment. sound Equipment. ties, MATLAB ological Operators on X-rays n using MATLAB MATLAB of medical Images pomain of medical Images		
 Demonstration of Ultra Introduction, Technicali Histograms and Morphe Intensity Transformatio Spatial Filtrating using N Filtrating in frequency E 	Course Outline for Lab s Equipment. sound Equipment. ties, MATLAB ological Operators on X-rays n using MATLAB MATLAB of medical Images pomain of medical Images		

8.33 Probability & Statistics

CODE & TITLE (BIN-321)	CREDIT & CONTACT HOURS (2+0)	KNOWLEDGE AREA/	DOMAIN
Probability & Statistics	32 Theory + 0 Lab Sessions	Natural Sciences	
After course comp	etion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Discuss fundamentals of graphical representation and frequency distributions.	C-2	2
CLO-2	Apply concepts of descriptive statistics to solve problems in the domain of Biomedical Engineering Technology.	C-3	3
CLO-3	Compare different types of data by exploiting their statistical characteristics using t-test, chi-square test and ANOVA to evaluate statistical significance.	C-4	2

Course Outline for Theory

Fundamentals of probability theory: Probability distribution and statistical characteristics of a random signal: Measures of central tendency and variation: Chebychev's theorem: z-scores: Frequency distributions: Graphical representation of data and Box plots: Symmetry: skewness and Quintiles (percentiles: deciles & Quartiles): Conditional probability and Bayes's theorem: counting techniques: Concept of random variable: Discrete and continuous variable: Variance: standard deviation and different types of distributions: Regression models and correlation coefficients: ANOVA: Estimation of statistical characteristics of data: Classical and Bayesian method of estimation: Estimation of Z-test: t-test and Goodness of fit test: Estimation theory and optimum estimators: Concept of uncorrelated: independent and orthogonal data.

- 1. Introduction to Probability and Statistics, William Mendenhall, Robert J Beaver and Barbara M Beaver, Cengage Learning (Latest Edition)
- 2. Applied Statistics and Probability for Engineers, Douglas C Montgomery and George C Runger, John Wiley & Sons (Latest Edition)
- 3. Statistics: A Biomedical Introduction, Bryon W Brown and Myles Hollander, Wiley-Interscience (Latest Edition)
- 4. Schaum's Outline of Probability and Statistics, Murray Spiegel, John Schiller and R Srinivasan, McGraw Hill Education (Latest Edition)

CODE & TITLE (BIT-322)	CREDIT & CONTACT HOURS (2+1)		A/ DOMAIN
Clinical Laboratory Equipment	48 Theory + 16 Lab Sessions	Depth	Denth
After course completion	students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Discuss the working principle, calibration, and maintenance of analytical equipment.	C-2	1
CLO-2	Explain the impact of chemical safety and biohazards on the environment and sustainable development.	C-2	7
CLO-3	Observe the working principle of laboratory instruments.	P-1	1
CLO-4	Fix and troubleshoot clinical laboratory equipment.	P-4	4
	Course Outline for Theory		
well as their calibration and maintenance selective electrodes: thermal equipmen	rumentation principles: their specific appl to produce quality analysis: particularly t t: centrifuges and balances: turbid meter s: electrochemistry: electrophoresis: chror	he following instruments: spec s. hematology analyzers: coa	trophotometers: ior gulation instrument
	Course Outline for Lab		
 Identify the types and uses of laborat Explain the advantages of laborat Describe the importance of ovens State the use of photometers and Identify the types and uses of mic State the basic components centr 	ory refrigerators. , water baths and incubators. desiccators. roscopes.		
5. State the basic components centr	nuge		

- 1. Locquin, M. Handbook of Microscopy. Butterworths. Boston (Latest Edition)
- 2. Raphael, S.S. Lynch's Medical Laboratory Technology. W.B. Saunders. Toronto (Latest Edition)

Course Content 8.35 Inter Disciplinary Technology Elective-I CODE & TITLE CREDIT & CONTACT HOURS KNOWLEDGE AREA/DOMAIN (BII-321) (3+0) IDTE-I IDTE-I 48 Theory + 0 Lab Sessions IDTE The course (with outline, CLO's etc.) to be offered by HEI from amongst the list of elective courses defined in this Curriculum. The HEI must ensure adequacy of academic and other resources for the course.

Course Content

8.36 Inter Disciplinary Technology Elective-II

		By Elective II
CODE & TITLE	CREDIT & CONTACT HOURS	KNOWLEDGE AREA/DOMAIN
(BII-322)	(2+1)	KNOWLEDGE AREA/DOWAIN
IDTE-II	32 Theory + 16 Lab Sessions	IDTE
The course (with outline	e, CLO's etc.) to be offered by HEI from amongst th	ne list of elective courses defined in this
Curriculum. The HEI mus	st ensure adequacy of academic and other resourc	es for the course.

Course Content 8.37 Project-II

CODE & TITLE (BIT-323)	CREDIT & CONTACT HOURS (0+3)	KNOWLEDGE	AREA/ DOMAIN
Project-II	0 Theory + 48 Lab Sessions	Project	
After course	completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Apply fundamental knowledge of engineering technology for implementation of proposed project idea along with comparison with previous related research.	C-3	1
CLO-2	Analyze the problem statement through research and literature review.	C-4	2
CLO-3	Defend the impact of proposed idea in societal and environmental contexts and its efficacy for sustainable development.	C-5	7
CLO-4	Develop a wide range of technical skills by delivering a working prototype using latest design tools that have passed through the design, implementation, testing and evaluation stages.	C-6	3
CLO-5	Integrate the solution of complex engineering technology problems for improvement of society or environment.	A-4	6
CLO-6	Practice and adopt ethical values in various methods.	A-5	8
CLO-7	Demonstrate effectiveness as an individual as well as a team member.	A-4	9
CLO-8	Display communication skills through presentations, technical reports, and posters .	A-5	10

CLO-9	Display the results of hardware components testing.	P-5	5
-------	--	-----	---

Course Content 8.38 Management Sciences Elective-III CODE & TITLE CREDIT & CONTACT HOURS KNOWLEDGE AREA/DOMAIN (BIH-411) (3+0) Management Science (BIM-411) 48 Theory + 0 Lab Sessions Management Science Management Science Elective-III The course (with outline, CLO's etc.) to be offered by HEI from amongst the list of elective courses defined in this Curriculum. The HEI must ensure adequacy of academic and other resources for the course. Hei course.

Course Content

8.39 Depth Elective-I

	8.39 Depth Elective-i	
CODE & TITLE	CREDIT & CONTACT HOURS	KNOWLEDGE AREA/DOMAIN
(BIT-412)	(2+1)	
Depth Elective-I	32 Theory + 16 Lab Sessions	Depth Elective
· · · · ·		
The course (with outline, CLO'	s etc.) to be offered by HEI from amongst the list	of elective courses defined in this
Curriculum. The HEI must ensu	re adequacy of academic and other resources for	r the course.

Course Content

	8.40 Depth Elective-II	
CODE & TITLE (BIT-413)	CREDIT & CONTACT HOURS (2+1)	KNOWLEDGE AREA/DOMAIN
Depth Elective-II	32 Theory + 16 Lab Sessions	Depth Elective
•	's etc.) to be offered by HEI from amongst the l ure adequacy of academic and other resources t	

Course Content

8.41 Depth Elective-III

CODE & TITLE (BIT-414)	CREDIT & CONTACT HOURS (2+1)	KNOWLEDGE AREA/DOMAIN		
Depth Elective -III	32 Theory + 16 Lab Sessions	Depth Elective		
The course (with outline, CLO's etc.) to be offered by HEI from amongst the list of elective courses defined in this				
Curriculum. The HEI must ensure adequacy of academic and other resources for the course.				

CODE & TITLE CREDIT & CONTACT HOURS KNOWLEDGE AREA/DOMAIN (BIT-411) (0+1)Depth **Troubleshooting of Medical 16 Lab Sessions** Devices **Bloom's Taxonomy** After course completion students will be able to: PLO Level **Identify** the protocols required for CLO-1 P-1 1 troubleshooting of medical devices. Demonstrate skills required to effectively CLO-2 P-2 5 calibrate and maintain medical devices. Fix medical equipment using CLO-3 troubleshooting skills at component, P-4 4 board, and system levels. **Course Outline for Lab** Troubleshooting of electronic circuit: Testing of Medical Devices: Safety guidelines for troubleshooting and testing: High voltages and high currents safety guidelines: Magnetic circuit/equipment safety guidelines: Fault finding techniques in medical devices: What are the basic troubleshooting techniques: What are the basic testing techniques: What are the tools used in troubleshooting and testing of medical devices: Introduction to protocols for troubleshooting of devices: Acceptance testing of medical device procedure and protocols: Calibration of medical devices: Corrective maintenance of medical devices: Troubleshooting software and laptop computers to connect to computer-based laboratory or imaging equipment: Component Level Troubleshooting: Board Level Troubleshooting: System level Troubleshooting **Recommended Books**

Repair and Maintenance of Medical Devices: Basic Clinical Equipment, Shashi Sinha (Latest Edition) 1.

2. Medical Equipment Management, Kieth Wilson (Latest Edition)

Frank D. Petruzella, "Electrician's Troubleshooting and Testing Pocket Guide," McGraw-Hill (Latest Edition) 3.

Course Content

8.43 Depth Elective-IV

CODE & TITLE (BIT-4135)	CREDIT & CONTACT HOURS (3+0)	KNOWLEDGE AREA/DOMAIN
Depth Elective -IV	48 Theory + 0 Lab Sessions	Depth Elective
The course (with outline, Cl	LO's etc.) to be offered by HEI from amongst th	e list of elective courses defined in this
Curriculum. The HEI must e	nsure adequacy of academic and other resourc	es for the course.

Course Content

8.42 Troubleshooting of Medical Devices

8.44 Biomedical Signal Processing

COURSE TITLE	CREDIT HOURS	KNOWLEDGE AREA/ DOMAIN	
(BIT-414)	(2+1)		
Biomedical Signal Processing	32 Theory + 16 Lab Sessions	Elective Depth	
After course comp	letion students will be able to:	Bloom's Taxonomy	PLO
		Level	
CLO-1	Explain the Nyquist criterion for sampling of continuous time signals, sampling rate conversion, and discrete time implementation of continuous time systems.	C-2	1
CLO-2	Apply a signal processing system using flow graph representation and fast Fourier transform.	C-3	1
CLO-3	Solve problems related to design of filters such as FIR filters, IIR filters.	C-3	3
CLO-4	Reproduce the experiments related to the design and implementation of digital filters.	P-2	5

Course Outline for Theory

Review of signals and systems and their properties: Modeling of Dynamic Systems: Linear Constant Coefficients Differential Equation (LCCDE) and Difference Equation: Review of Laplace transform: Transfer Function: Poles and Zeros: Sampling and Reconstruction: upsampling and down sampling: Z-transform and its application in the analysis of Discrete LTI system: computation of frequency response from Pole: Zero plot: Review of the Frequency domain analysis of Continuous time systems: CTFS: CTFT: DTFT: DFT (DTFS): FFT: Design and implementation of analog and digital finite impulse response (FIR) and infinite impulse response (IIR) filters. A quick introduction to statistical signal processing: feature extraction and pattern recognition techniques: Case Studies of various Biomedical Signals: ECG: EEG

Course Outline for Lab

- 1. Introduction to MATLAB Signal Processing Toolbox
- 2. Signal generation, convolution, impulse response
- 3. Up- Down- Sampling
- 4. Spectral Leakage and Zero Padding
- 5. Introduction to Simulink
- 6. Sampling and Reconstruction through Simulink
- 7. Frequency Response of Discrete Time Systems
- 8. Implementation of FFT DIT algorithm in MATLAB
- 9. Design and Implementation of LP, HP filter
- 10. Design and Implementation of BP filters
- 11. Data classification
- 12. ECG acquisition and introduction MIT/BIH arrhythmia database
- 13. QRS Detection: Pan-Tompkins Algorithm Part I
- 14. QRS Detection: Pan-Tompkins Algorithm Part I
- 15. ECG Rhythm Analysis

- 1. A. B. Carson, Signals and System, Wiley (Latest Edition)
- 2. John G. Proakis, Dimitris, Digital Signal Processing (Latest Edition)
- 3. Engene, N, Bruce, Biomedical Signal Processing and Signal Modeling , John Wiley & Sons (Latest Edition)
- 4. Arther, B. Ritter, Stanley Reisman&Bozena, B. Michniah, Biomedical Engineering Principles, CRC Taylor & Francis (Latest Edition)
- 5. John L. Semmlow, Biosignal and Biomedical Image Processing (Signal Processing) (Latest Edition)
- 6. Saeed V. Vaseghi, Communications, Advanced Digital Signal Processing and Noise Reduction (Latest Edition)
- 7. Charles C. Hsu (Editor), Charles Hsu, Advanced Signal Processing Technology (Latest Edition)
- 8. Allan V Oppenheim, Digital Signal Processing, Prentice Hall (Latest Edition)

Course Content 8.45 Biotelemetry System

COURSE TITLE (BIT-413) Telemedicine Systems	CREDITS HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
After course com	pletion students will be able to:	Bloom's Taxonomy Level	PLC
CLO-1	Discuss basics of Telemedicine Systems and applications.	C-2	1
CLO-2	Interpret the use of Mobile and Internet Technologies in Telemedicine.	C-2	7
CLO-3	Use the functions of DICOM, PACS for Telemedicine.	C-3	5
CLO-4	Read different types of images from DICOM.	P-2	5
CLO-5	Organize patient data into different classes based on their disease.	P-4	5

Course Outline for Theory

Introduction to Biotelemetry system: Basic Telemedicine Skills - demystifying the world of technology: using LAN and WAN technologies: Evolvement of Mobile and Internet Technologies in Telemedicine: Medical information storage and management for telemedicine: patient information: medical history: test reports: medical images: diagnosis and treatment: Security and Confidentially Functions of DICOM: PACS and HIS for Telemedicine

Course Outline for Lab

- 1. Identify the different kinds of access to Internet and email available locally: Discuss different communication options: Discuss the latest ICTs such as mobile phones: PDAs
- 2. Access the internet to: Do a literature search: download software: use an IP based educational software package
- 3. Setup a Contact list and Chat Group with access to a database
- 4. Generate images and save them in DICOM formats
- 5. Organize and group patient data into different groups based on their disease
- 6. Project and viva

- 1. Telemedicine: A Guide to Assessing Telecommunications for Health Care (Latest Edition)
- 2. Telemedicine Technologies: Information Technologies in Medicine and Telehealth by A. C. M. Fong, Bernard Fong, and C. K. Li (Latest Edition)
- 3. Essentials of Telemedicine and Telecare by A. C. Norris (Latest Edition)
- 4. Introduction to Telemedicine, Richard Wootton, John Craig, Victor Patterson(Latest Edition)

Course Content 8.46 Medical Device Quality System and Standards

COURSE TITLE (BIT-415) Medical Device Quality System and Standards	CREDITS HOURS (1+0) 16 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
After course cor	npletion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Explain the quality management system for medical device manufacture.	C-2	1
CLO-2	Compare the approval process for new medical devices in different jurisdiction.	C-4	6
	Course Outline for Theory		
Quality Management System: Term a	nd Definition: General Requirements: Quality Ma	anual: Control of Documents: Co	ntrols of Record

Management Responsibility and Resource a. Management commitment Requirements: Countrol of Documents: Control of Documents: Control of Documents: Control of Neccolds: Management Responsibility and Resources: Infrastructure and work environments: Product Realization: Planning of Product Realization: Customer Related Processes: Design and Development: Purchasing: Production and Service Provision: Validation of Processes of Production: Identification and Traceability: Control of Monitoring and Measuring: Regulation for Medical Devices by DRAP. Quality System Regulations (21CFR820).

Recommended Books

1. A Complete Guide to Quality Management in the Medical Device Industry, ItayAbuhav (Latest Edition)

Course Content 8.47 Medical Device Regulatory Affairs

COURSE TITLE (BIT-416)	CREDITS HOURS (1+0) 16 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
Medical Device Regulatory Affairs After course con	npletion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Understand major global reference regulations and harmonization efforts for medical devices, regulatory environment in key Asian markets for medical devices.	C-2	1
CLO-2	Explain general pre-market requirements, the legal logics behind the definition and regulation of advanced products.	C-2	1
	Course Outline for Theory		
major Asian reference countries d: Fu <i>Pre-market requirements</i> a: Background b: Classifications c: GN Advanced products a: Combination products: Medical Dev <i>Investigational Device Exemptions</i> a: HDEs b: Medical Device 510(k) c: F <i>FDA Enforcement</i>	ajor global reference regulations and harmoniz ture trends in regulatory development: P d: Conformity assessment vice Errors a: Human Factors b: Electronic Health Pre-Market Approval (PMA) submissions d: de r	n Records: novo review and Product Devel	
	Recommended Books		
527-31877-3 2 (Latest Edition	Affairs: Pharmaceuticals, Diagnostics, Medical D 1) Regulatory Affairs in Asia by Jack Wong, Raymo		alsh, ISBN: 978-3

Course Content 8.48 Power Electronics

COURSE TITLE (BIT-417) Power Electronics	CREDITS HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
After course	completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Explain the modern semiconductor devices, their switching and protection methods and the operation of different power converter applications.	C-2	1
CLO-2	Apply the acquired knowledge to solve different power electronics circuits.	C-3	2
CLO-3	Observe knowledge of power electronics trainer board and thyristor-based power controller electronic circuits.	P-1	5
CLO-4	Make the setup for development of power electronic circuit such as controlled rectifier, inverter, dc chopper, cycloconverter and AC regulator and motor controlling using power electronic trainer board.	P-2	5

Course Outline for Theory

Introduction to power electronics a. History of power electronics b. Applications c. Power electronic devices d. Triggering devices e. Manufacturers datasheet f. Device protection, Diode circuits and rectifiers a. Diodes with RLC loads b. Freewheeling diodes c. Single phase rectifiers d. Poly phase rectifiers, Thyristor commutation a. Natural commutation b. Forced commutation c. Commutation circuit design, Controlled rectifiers a. Phase controlled converter operation b. Semi-converter c. Full converter d. Dual converter e. Series converters f. Power factor improvement g. Design converter circuits h. Effects of inductances, Static switches a. Single phase AC switches b. Polyphase AC switches c. DC switches d. Design of static switches, AC voltage controllers a. Single phase controllers b. Polyphase controllers c. Transformer tap changers d. Cycloconverters e. Design of AC voltage controller circuits f. Effects of inductances, DC choppers a. Introduction b. Step-down and step-up chopper operation c. Switching mode regulators d. Thyristor chopper circuits e. Chopper circuit design, Inverters a. Principles of operation b. Single phase inverters c. Polyphase inverters d. Voltage control of inverters e. Harmonic reductions , Cycloconverters a. Single phase cycloconverter circuits b. Three phase cycloconverter circuits, DC motor drive applications, Voltage source converters and control, Waveform analysis, harmonic minimization, PWM AC motor drives, Power electronic applications in power systems.

Course Outline for Lab

- 1. To become familiar with user interface of Pspice
- 2. To understand and design a circuit of 1-phase half and full wave uncontrolled rectifier.
- 3. To understand and design a circuit of 1-phase half wave-controlled rectifier (0 to 90 degree).
- 4. To understand and design a circuit of 1-phase half wave-controlled rectifier (0 to 180 degree).
- 5. To understand and design a circuit of 1-phase full wave-controlled rectifier.
- 6. To understand and design a circuit of 3-phase half wave uncontrolled rectifier.

- 7. To understand and design a circuit of 3-phase full wave uncontrolled rectifier.
- 8. To understand and design a circuit of 3-phase half wave-controlled rectifier.
- 9. To understand and design a circuit of 3-phase full wave-controlled rectifier.
- 10. To understand and design a circuit of a Buck converter.
- 11. To understand and design a circuit of a Boost converter.
- 12. To understand and design a circuit of a Buck- Boost converter.
- 13. To understand and design a circuit of Cuk Converter.
- 14. To understand and design a circuit of a Single-Phase Full Bridge Inverter.
- 15. Open ended lab.

- 1. N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, Media Enhanced 3 rd Edition, John Wiley & Sons, Inc. (Latest Edition)
- 2. M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, 4 th Edition, Prentice Hall (Latest Edition)
- 3. M. D. Singh and K.B. Khanchandani, 'Power Electronics', Tata McGraw-Hills Publishing Company Limited (Latest Edition)
- 4. Power Electronics--A First Course" Mohan, Wiley (Latest Edition)
- 5. Vedam Subramaniam, 'Power Electronics', New Age International (P) Ltd Publishers (Latest Edition)
- 6. Philip T. Krein, 'Elements of Power Electronics', Oxford University Press (Latest Edition)
- 7. V. R. Moorthi, 'Power Electronics-Devices, Circuits and Industrial Applications', Oxford University Press (Latest Edition)

Course Content 8.49 Medical Robotics

CREDITS HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
e completion students will be able to:	Bloom's Taxonomy Level	PLO
Describe the fundamentals of robotics.	C-2	1
Solve the position and orientation of objects and the relationship between robot joint coordinates and tool position.	C-3	2
Differentiate between types and characteristics of actuators, control systems and operating interface of medical robots.	C-2	2
Recognize different movements of kinematics.	P-1	PLO-1
Make robotic arm with sensor actuation.	P-4	PLO-2
	(2+1) 32 Theory + 16 Lab Sessions Se completion students will be able to: Describe the fundamentals of robotics. Describe the fundamentals of robotics. Solve the position and orientation of objects and the relationship between robot joint coordinates and tool position. Differentiate between types and characteristics of actuators, control systems and operating interface of medical robots. Recognize different movements of kinematics.	(2+1) Elective Depth 32 Theory + 16 Lab Sessions Elective Depth se completion students will be able to: Bloom's Taxonomy Level Describe the fundamentals of robotics. C-2 Solve the position and orientation of objects and the relationship between robot joint coordinates and tool position. C-3 Differentiate between types and characteristics of actuators, control systems and operating interface of medical robots. C-2 Recognize different movements of P-1

Fundamentals a. What is a robot? b. Classification of Robots. c. What is Robotics? d. History of Robotics. e. Advantages and Disadvantages of Robots. f. Robot Components. g. Robot Degrees of Freedom. h. Robot Joints. i. Robot Coordinates. j. Robot Reference Frames. k. Programming Modes. I. Robot Characteristics. m. Robot Workspace. n. Robot Languages. o. Robot Applications. p. Other Robots and Applications. q. Social Issues.

Robot Kinematics a. Position Analysis. b. Robots as Mechanisms. c. Matrix Representation. d. Homogeneous Transformation Matrices. e. Representation of Transformations. f. Inverse of Transformation Matrices. g. Forward and Inverse Kinematics of Robots. h. Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots. i. The Inverse Kinematic Solution of Robots. j. Inverse Kinematic Programming of Robots. k. Degeneracy and Dexterity. I. The Fundamental Problem with the Denavit-Hartenberg Representation. m. Differential Motions and Velocities.

Differential Relationships a. Jacobian. b. Differential Motions of a Frame. c. Interpretation of the Differential Change. 118 d. Differential Changes between Frames. e. Differential Motions of a Robot and Its Hand Frame. f. Calculation of the Jacobian. g. How to Relate the Jacobian and the Differential Operator. h. Inverse Jacobian. i. Design Project. j. Dynamic Analysis and Forces, Lagrangian Mechanics a. A Short Overview. b. Effective Moments of Inertia. c. Dynamic Equations for Multiple-Degree-of-Freedom Robots. d. Static Force Analysis of Robots. e. Transformation of Forces and Moments between Coordinate Frames. f. Design Project, Trajectory Planning a. Path vs. Trajectory b. Joint Space vs. Cartesian-Space. c. Basics of Trajectory Planning. d. Joint space trajectory planning, e. Cartesian space trajectories.

Application of Robotic in BME a. Introduction to medical robotics b. Mechanisms for medical robots c. Sensing for medical robots d. Actuators for medical robots e. Controls for medical robots f. Interfaces for medical robots

Course Outline for Lab

2. The Tower of Hanoi

3. Forward Kinematics

^{1.} Introduction to the Rhino

- 4. Inverse Kinematics
- 5. Image Processing
- 6. Camera Calibration
- 7. Object Centroids
- 8. Camera Calibration
- 9. Pick and Place
- 10. Grading
- 11. Tactile and force sensing
- 12. Proximity sensing
- 13. Medical robotics
- 14. Open ended lab 1
- 15. Open ended lab 2
- 16. Open ended lab 3

- 1. Robotics: Everything You Need to Know About Robotics from Beginner to Expert, Peter Mckinnon (Latest Edition)
- 2. Robotics, Vision and Control: Fundamental Algorithms in MATLAB (Latest Edition)
- 3. Springer Handbook of Robotics, Siciliano, Bruno, Khatib, Oussama (Latest Edition)
- 4. Robotics Modelling, Planning and Control, Siciliano, B., Sciavicco, L., Villani, L., Oriolo (Latest Edition)
- 5. Medical Robotics: Minimally Invasive Surgery, Paula Gomes, ISBN:9780857097392, (Latest Edition)
- 6. Medical Robotics, Schweikard, Achim, Ernst, Floris (Latest Edition)

Course Content 8.50 Rehabilitation Techniques

COURSE TITLE (BIT-419) Rehabilitation Engineering Technology	CREDITS HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth		
After course comp	letion students will be able to:	Bloom's Taxonomy Level	PLO	
CLO-1	Explain the domains of rehabilitation engineering technology.	C-2	1	
CLO-2	Explain working principles of prosthetic, orthotic, and devices for visually as well as hearing impairment.	C-3	1	
CLO-3	Measure physiological parameters during electrical stimulation.	P-4	5	
CLO-4	Operate assistive devices for hearing and visually impaired.	P-3	5	
Course Outline for Theory				

Introduction a. Introduction to rehabilitation engineering and assistive technology (AT) b. Domains of rehabilitation techniques, Limb Prosthetic Devices a. Classification of amputation b. Prosthetic prescription and fabrication c. Components of upper limb prosthesis d. Components of lower limb prosthesis, Orthotic Devices a. Introduction b. Biomechanical principles of orthoses c. Design consideration d. Spinal orthoses e. Limb orthoses, Devices for Visually Impaired a. Dimensions of visual impairment and their impact on task performance b. General purpose assistive technology solutions c. Task-specific assistive technologies d. Technology for reading e. Writing and graphic access, Devices for Hearing Impairment a. Types of hearing impairment b. Historical overview of HAT (Hearing assistance technology) c. Medical and surgical approaches to restoring hearing function d. Assistive listening devices solutions e. Environmental adaptations and universal designs, Wheelchairs a. Manual wheelchairs and electrical power wheelchairs with brief history b. User profiles c. Basic structural components d. Power and drive systems e. Control system f. Power assisted wheelchairs g. Multifunctional wheelchairs h. Wheelchair standards, Neurorehabilitation a. Functional Electrical Stimulation b. Transcutaneous Electrical Stimulation c. Brain Computer Interface d. Assessment methods for neurorehabilitation.

Course Outline for Lab

- 1. Angle measurements using electronic goniometer in rest and walking state
- 2. Foot pressure measurement using force sensitive resistors (FSR)
- 3. Modeling and simulation of biomechanics arm using Autocad
- 4. Gait parameter analysis 5. EMG measurement during Functional electrical stimulation (FES)
- 5. Assessment of EMG before and after TENS
- 6. Design of brain computer interface using neurosky EEG device to detect subject's response
- 7. Control of peripheral devices such as using neurosky EEG device to switch ON/OFF home appliances
- 8. Demonstration of electrical power wheelchair
- 9. Demonstration of hearing aid.
- 10. Demonstration of visually impaired devices.
- 11. Open ended Lab 1
- 12. Open ended Lab 2
- 13. Open ended Lab 3

- 14. Open ended Lab 4
- 15. Open ended Lab 5

Recommended Books

- 1. Rory A Cooper and HisaichiOhnabe, An Introduction to Rehabilitation Engineering, ISBN: 9780849372223 (Latest Edition)
- 2. Pedro Encarnação and Albert Cook, Robotic Assistive Technologies: Principles and Practice, ISBN: 9781498745727 (Latest Edition)
- 3. Marko B. Popović, Biomechanics and Robotics, ISBN: 9789814411370 (Latest Edition)
- 4. Albert M. Cook and Janice Miller Polgar, Assistive Technologies: Principles and Practice, 4th Edition, ISBN: 9780323096317 (Latest Edition)
- Kevin Russell Henderson, Wheelchairs: Perceptions, Technology Advances and Barriers, ISBN: 9781536103908 (Latest Edition)
 Michelle M. Lusardi, Orthotics and Prosthetics in Rehabilitation, ISBN: 9781437719369 (Latest Edition)

Course Content 8.51 Tissue Engineering Technology

COURSE TITLE (BIT-4110) Tissue Engineering	CREDITS HOURS (2+0) 32 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
After course o	completion students will be able to:	Bloom's Taxonomy Level	PLC
CLO-1	Understand the field of tissue engineering.	C-1	1
CLO-2	Discuss the cell culture technique, Bioreactor, cell proliferation, extracellular matrix, and growth factors.	C-2	5
CLO-3	Apply tissue engineering technology principles to design a specific biological tissue.	C-3	3
	Course Outline for Theory		

Tissue Technology c. Polymeric Scaffolds for Tissue Applications d. Nanocomposite Scaffolds for Tissue Technology, Tissue-Biomaterial interaction and response a. Cell Adhesion b. Cell Migration c. Inflammatory and Immune Responses to Tissue Devices, Tissue Technology d. Cardiac Tissue Technology, c. Cartilage Tissue Technology d. Cardiac Tissue Technology e. Muscle Tissue Technology, Growth Factors a. Growth Factors and Morphogens: Signals for Tissue Technology, Ethical and regulatory issues in tissue engineering

Recommended Books

- 1. Buddy D. Ratner, et. al, Biomaterials Science, Second Edition: An Introduction to Materials in Medicine (Latest Edition)
- 2. Handbook of Biomaterial Properties, William Murphy, Jonathan Black, Garth Hastings (Latest Edition)
- 3. David Hill, Design Engineering of Biomaterials for Medical Devices (Latest Edition)
- 4. Jos Vander Sloten, Computer Technology in Biomaterials Science and Engineering (Biomaterials Science & Engineering) (Latest Edition)
- 5. Kay C. Dee, et al, An Introduction to Tissue-Biomaterial Interactions (Latest Edition)
- 6. Temenoff, J. S, Biomaterials: The intersection of biology & materials science, (Latest Edition)
- 7. Tissue Regeneration From Basic Biology to Clinical Application, Edited by Jamie Davies, ISBN 978-953-51-0387-5 (Latest Edition)

Course Content 8.52 Drug Delivery Systems

COURSE TITLE (BIT-4111) Drug Delivery Systems	CREDITS HOURS (2+0) 32 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
After course comple	tion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Describe novel drug delivery systems.	C-2	1
CLO-2	Investigate different approaches used for controlled drug delivery systems .	C-4	4
CLO-3	Apply ethical obligations in controlled drug delivery systems.	C-3	8
	Course Outline for Theory		

Diffusion and Drug Dispersion a. Equations for the diffusive flux (Fick's law) b. Equations of mass conservation (Fick's second law) c. Solutions to the diffusion equation with no solute elimination or generation d. Solutions to the diffusion equation with solute binding and elimination e. Applications, Diffusion in Biological Systems a. Measurement of diffusion coefficients b. Diffusion in water c. Diffusion in polymer solutions and gels d. Diffusion in the extracellular space e. Diffusion with binding in tissues f. Diffusion within cells g. Diffusion and reaction, Drug Permeation through Biological Barriers a. Mobility of lipids and proteins in the membrane b. Permeation through lipid membranes c. Permeation through porous membranes d. Permeation is enhanced by membrane proteins e. Permeation through cell layers, Drug Transport by Fluid Motion a. Blood movement in the circulatory system b. Interstitial fluid movement c. Fluid movement in the lymphatic circulation d. Fluid movement in the brain, Drug Delivery Systems a. Reservoir and transdermal delivery systems b. Matrix delivery systems c. Hydrogel delivery systems d. Degradable delivery systems e. Particulate delivery systems f. Responsive delivery system, Case Studies in Drug Delivery a. Controlled delivery of systemic therapy b. Implants for local drug delivery c. Topically applied devices for controlled release d. Ethical issues in Drug Delivery Systems

Recommended Books

1. Drug Delivery: Engineering Principles for Drug Therapy by Saltzman; Oxford University Press (Latest Edition)

Course Content 8.53 Artificial Intelligence

COURSE TITLE (BIT-4112) Artificial Intelligence	CREDITS HOURS (2+1) 32 Theory + 16 Lab Sessions	KNOWLEDGE AREA/ DOMAI Elective/Dept	N
After course	After course completion students will be able to: Bloom's Taxonomy Level		PLO
CLO-1	Comprehend the basics of artificial intelligence with emphasize on search algorithms and the concept of AI agents.	C-2	1
CLO-2	Apply various search algorithms such as uninformed, informed and heuristic.	C-3	2
CLO-3	Describe fundamentals of knowledge representation, inference and theorem proving.	C-2	1
CLO-4	Demonstrate simple knowledge-based systems.	P-3	3
	Course Outline for Theory		
Problem Solving by Searching: a. Searching for Solutions. b. Uninf Informed (Heuristic) Search Strate Representation Introduction to Reasoning and Kno	er Logic. c. Reasoning with Uncertainty & Probabil	es Heuristic Functions, Reasoning	
	Course Outline for Lab		
 Introduction to AI related Generating and Processin Developing AI agents. 	programming languages. g Undirected and Directed Graphs.		

12. Reasoning with Uncertainty.

- 13. Implementation of Probabilistic Reasoning.
- 14. Implementation of Bayes' Rule.
- 15. Decision Tree Algorithm.
- 16. Implementing ID3 Algorithm.

Recommended Books

- 1. Russell S.; Norvig P.; "Artificial intelligence A Modern Approach", Prentice Hall (Latest Edition)
- 2. Luger G.F.; Artificial Intelligence Structures and Strategies for Complex Problem Solving", Pearson Higher Education (Latest)

Course Content 8.54 Bioinformatics

CREDITS HOURS (2+0) 32 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
pletion students will be able to:	Bloom's Taxonomy Level	PLO
Discuss fundamentals of Genomics and Transcriptomics with respect to bioinformatics.	C-1	1
Describe the structure, classification, and functions of proteins and DNA.	C-2	2
Compare protein sequences.	C-4	1
Carryout research to retrieve DNA and protein sequences.	C-3	4
	(2+0) 32 Theory + 0 Lab Sessions Appletion students will be able to: Discuss fundamentals of Genomics and Transcriptomics with respect to bioinformatics. Describe the structure, classification, and functions of proteins and DNA. Compare protein sequences. Carryout research to retrieve DNA and	(2+0) 32 Theory + 0 Lab SessionsAREA/ DOMAIN Elective Depthmpletion students will be able to:Bloom's Taxonomy LevelDiscuss fundamentals of Genomics and Transcriptomics with respect to bioinformatics.C-1Describe the structure, classification, and functions of proteins and DNA.C-2Compare protein sequences.C-4Carryout research to retrieve DNA and C-3C-3

History and evolution of bioinformatics:

a. Introduction to databases (Database types, Database formats, DNA databases, European Molecular Biology Laboratory (EMBL) b. Genomics c. Transcriptomics d. Computational proteomics

Pairwise Sequence Alignment:

- a. Evolutionary Basis b. Sequence Homology versus Sequence Similarity c. Sequence Similarity versus Sequence Identity Database Similarity Searching:
- a. Unique Requirements of Database Searching b. Heuristic Database Searching c. Basic Local Alignment Search Tool (BLAST) d. FASTA e. Comparison of FASTA and BLAST

GenBank and DNA Data base of Japan (DDBJ):

a. Protein information Resource (PIR) formats b. Protein Sequence (databases, SwissProt, UniProt, UniProtKB/TrEMBL) c. Structural databases (Protein Databank (PDB), Structural Classification of Proteins (SCOP) database: Class: Architecture: Topology: Homology (CATH) database).

Recommended Books

- 1. Introduction to Bioinformatics, Arthur M. Lesk, 4th Edition, Oxford University Press, ISBN 0198724675, 9780198724674 (Latest Edition)
- 2. Bioinformatics and Functional Genomics, Jonathan Pevsner, Wiley, ISBN 0470085851, 9780470085851 (Latest Edition)

Course Content 8.55 Medical Image Processing

COURSE TITLE	CREDITS HOURS	KNOWLEDGE AREA/ DC	MAIN
(BIT-412) Medical Image Processing	(2+1) 32 Theory + 16 Lab Sessions	Elective Depth	
After course comple	tion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Explain the fundamentals of Medical Image Processing techniques (spatial domain, frequency domain, noise removal, image reconstruction and image segmentation).	C-2	1
CLO-2	Analyze the medical image to remove noise.	C-4	2
CLO-3	Practice various filtration techniques on medical images using software tools.	P-3	5
CLO-4	Perform the segmentation and classification on different medical images using software tools.	P-5	5
CLO-4	classification on different medical images	P-5	

Digital Image Fundamental:

a. Image file formats b. Elements of Visual Perception c. Image Sampling and Quantization d.

An Introduction to the Mathematical Tools Used in Digital Image Processing, Intensity Transformations and Spatial Filtering:

a. Basic Intensity Transformation Functions b. Histogram Processing c. Fundamentals of Spatial Filtering d. Smoothing Spatial Filters e. Sharpening Spatial Filters, Filtering in the Frequency Domain:

a. Review of Concept about Fourier in 1D b. Fourier Functions of Two Variable c. The Basics of Filtering in the Frequency Domain d. Image Smoothing Using Frequency Domain Filters e. Image Sharpening Using Frequency Domain Filters,

Image Restoration and Reconstruction:

a. Noise Models b. Restoration in the Presence of Noise Only-Spatial Filtering c. Periodic Noise Reduction by Frequency Domain Filtering d. Inverse Filtering, Least Squares Filtering, GM filtering e. Image

Reconstruction from Projections, Image Segmentation:

a. Point, Line, and Edge Detection b. Thresholding c. Region-Based Segmentation d. Segmentation Using Morphological Watersheds e. The Use of Motion in Segmentation, Image Compression:

a. Compression Standards b. Some Basic Compression Methods (Huffman Coding, Golomb Coding)

Course Outline for Lab

- 1. MATLAB: Introduction to MATLAB and image processing toolbox
- 2. Digital Image Fundamentals: Sampling and quantization, bits per pixel & shades, spatial resolution & image size, Zooming & shrinking images
- 3. Basic Gray Level transformations: Image Negative, Log transform.
- 4. Application Of Gamma Correction to enhance image
- 5. Contrast stretching and thresholding
- 6. Introduction to image Histogram , Histogram sliding

- 7. Histogram equalization
- 8. Enhancement using arithmetic/logic operations
- 9. Smoothing spatial filters (Mean and Median filters)
- 10. Sharpening spatial filters (Laplace and Sobel)
- 11. Un-sharp masking and high-boost filtering Combining Spatial Enhancement methods
- 12. Review of Fourier transform and convolution theorem, 2D-FT, FT and frequency components of an image
- 13. Lowpass and Highpass Filters: Ideal filters, Butterworth filters, Gaussian filters. Filters comparison, Unsharp Masking
- 14. Dilation and erosion
- 15. Detection of discontinuities, Edge linking and boundary detection, Segmentation by thresholding
- 16. Object recognition, classification and image compression

Recommended Books

- 1. Digital Image Processing for Medical Applications by Geoff Dougherty, Cambridge University Press (Latest Edition)
- 2. Digital Image Processing by Gonzales, R. C., Prentice Hall, New Jersey (Latest Edition)

Course Content 8.56 Hospital Information System

CREDITS HOURS (2+0) 32 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMAIN Elective Depth	
pletion students will be able to:	Bloom's Taxonomy Level	PLO
Describe concepts, components, and applications of Hospital Information System (HIS).	C-1	1
Explain latest developments in Hospital Management and Information Systems.	C-2	1
Demonstrate benefits of Electronic Health Records (EHRs) and use of Decision Support Systems (DSS) in HIS.	C-3	3
Investigate action plan to transform traditional hospital information systems to modern HIS with EHRs and DSS for improved efficiency.	C-4	6
	(2+0)32 Theory + 0 Lab Sessionsapletion students will be able to:Describe concepts, components, and applications of Hospital Information System (HIS).Explain latest developments in Hospital Management and Information Systems.Demonstrate benefits of Electronic Health Records (EHRs) and use of Decision Support Systems (DSS) in HIS.Investigate action plan to transform traditional hospital information systems to modern HIS with EHRs and DSS for	(2+0) 32 Theory + 0 Lab SessionsAREA/ DOMAIN Elective Depthmpletion students will be able to:Bloom's Taxonomy LevelDescribe concepts, components, and applications of Hospital Information System (HIS).C-1Explain latest developments in Hospital Management and Information Systems.C-2Demonstrate benefits of Electronic Health Records (EHRs) and use of Decision Support Systems (DSS) in HIS.C-3Investigate action plan to transform traditional hospital information systems to modern HIS with EHRs and DSS forC-4

Introduction:

a. Basics of Information Systems b. Rudiments of Healthcare Information Management System c. HIS, Now and future, Data standards, Handling and Processing:

a. Data representation b. Storage Tiers c. Data Structure d. Flow Charts and Work Process Flow Diagrams e. Electronic Health Records (HERs) f. Pros & Cons of Paper medical records g. Functions and Benefits of EHRs,

Subsystems of HIS:

a. Health Information Systems in Clinical Settings b. Laboratory Information Systems c. Radiology Information Systems d. Clinical Decision Support Systems (CDSS) e. Healthcare Financial Management,

Network and Communication

a. Medical device networking b. DICOM c. HL7 standards.

Recommended Books

1. Strategic Information Management in Hospitals: An Introduction to Hospital by Reinhold Haux ISBN:0-378-40356-6 (Latest Edition)

2. Medical Data Management: A Practical Guide ISBN 978-0-387-21773-4 (Latest Edition)

Curriculum for Bachelor of Biomedical Engineering Technology

Course Content

	8.57 Professional Ethics		
COURSE TITLE (BIS-121)	CREDITS HOURS (3+0) 48 Theory + 0 Lab Sessions	KNOWLEDGE AREA	
Professional Ethics			
After co	ourse completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Comprehend the basis of a profession, professional ethics, various moral and social issues, importance of values and professional ethics in personal life and professional career, and consequences of acting unethically in organization and society.	C-1	7
CLO-2	Acquire knowledge of various roles of engineering technologist in applying ethical principles at various professional levels.	A-3	6
CLO-3	Resolve the ethical dilemmas using common ethical values and identify possible actions to be taken in response.	A-5	8
	Course Outline for Theory		
origin of professional ethics; p professional associations; bene Value of Ethics: Values in professional ethics; ce ethical code for engineering pr property rights; business ethics Ethical Dilemmas:	and professional ethics; the nature of engineering ethics; I profession and professionalism; professional accountabilit fits of acting ethically and consequences of acting unethica entral responsibility of engineering professionals; ethics in professionals; global issues in professional ethics; ethics in and corporate governance.	y; professional success; pro ally. different fields of work; IEEE manufacturing and marketin	fessional risks; code of ethics; ng; intellectual
1. Engineering Ethics Cor	Recommended Books		

Course Content 8.58 Organizational Behavior

COURSE TITLE (BIS-122) Organizational Behavior	CREDITS HOURS (3+0) 48 Theory + 0 Lab Sessions	KNOWLEDG AREA/ DOMA Social Science El	AIN
After cour	se completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Describe the field of organizational behaviour and the impact of organizational culture on individuals and the workplace.	A-1	9
CLO-2	Explain group dynamics within organizations, impact of diversity on the workplace, and strategies to manage groups and teams.	A-3	9
CLO-3	Discuss theories of motivations, importance of managing stress and emotions, and strategies to manage change and improve motivation in the workplace.	A-2	9
	Course Outline for Theory		
Perceiving ourselves and others in Applied performance practices; De	l of organizational behaviour; motivation; Individual an n organizations; Workplace emotions; Attitudes; and st ecision making and creativity; Team dynamics; Commun otiation in the workplace; Leadership in organizational s onal change and development.	ress foundations of employ icating in organizations; Pow	ee motivation; ver and politics
	Recommended Books		
-	Behavior McShane, Steven L. & Sheen, Sandra L. McGra by Robbins & Judge, Prentice-Hall Publishing, (Latest Ed		on)

- 3. Luthan Fred, Organizational Behaviour, McGraw Hill Inc, (Latest Edition)
- 4. Robins, Stephen, Organizational Behaviour, McGraw Hill Inc. (Latest Edition)
- 5. Finchan, R., & Rhodes, P. Principles of Organizational Behaviour, Oxford Press (Latest Edition)

Curriculum for Bachelor of Biomedical Engineering Technology

Course Content

COURSE TITLE	CREDIT HOURS	KNOWLEDGE AREA/ DOMAIN	
(BIS-211)	(3+0)		
Critical Thinking	48 Theory + 0 Lab Sessions	Social Sciences	
After cou	rse completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Use critical thinking skills when making business decisions and react with curiosity instead of emotion.	C-1	12
CLO-2	Choose the right techniques to recognize assumptions and draw conclusions.	C-3	12
CLO-3	Translate an abstract idea into something tangible.	P-4	12
	Course Outline for Theory		
Connections; Left- and Right-Br Standards of Critical Thinking; Context; Checking Credibility Questions; Probing Techniques Creating Explanations: Defining	What is Critical Thinking; Characteristics of a Critical Th ain Thinking; and Whole-Brain Thinking; The Critical Thi Identifying the Issues; Identifying the Arguments; Clar and Consistency; Evaluating Arguments; Case Stud- s; Pushing My Buttons; Critical Thinking Questions; Ac g Explanations; Steps to Building an Explanation; Makin oposite; Mind mapping; DeBono's thinking Hats; Techn unicating your ideas to others.	nking Process: The Critical Thir rifying the Issues and Argume y; Developing Critical Thinkir tive Listening Skills; challenging on Connections; Creative Think	nking Model; the nts; Establishing ng Skills: Asking ng assumptions; king Techniques:
	Recommended Books		

1. Diestler, Sherry. Becoming a Critical Thinker. New Jersey: Prentice Hall, (Latest Edition)

2. Browne, M. Neil, and Stuart M. Keeley. Asking The Right Questions. New Jersey: Prentice Hall, (Latest Edition)

Course Content 8.60 Professional Psychology and Human Behavior

COURSE TITLE (BIS-212)	CREDIT HOURS (3+0)	KNOWLEDGE AREA/I	OMAIN
Professional Psychology & Human Behaviour	48 Theory + 0 Lab Sessions	Social Sciences	
After course	e completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Understand the complexity of human behaviour and relationships.	C-2	1
CLO-2	Comprehend psychology as science and empirical methods used for understanding different aspects of human behaviour.	C-2	4
CLO-3	Apply the skills in research and evaluation within a scientific framework to interact with different professionals and do an effective communicate information in both verbal and non-verbal way.	C-3	10
	Course Outline for Theory		
osychology; Ethical issues; Fields on nervous system; Peripheral nervo kinesthetics; introduction to perc nensory perception; Learning: Definational learning netent and observational learning	ntific perspective of Psychology; Historical perspective of psychology; Historical perspective of psychology and their application; Biological Basis of us system; Endocrine system; Sensation and Percept eption; Kinds of Perception; Gestalt principles; Binoc inition of learning; Types of learning: Classical and ope g; Memory: Definition and types of memory; Proceognition and Language: Concept of cognition; Prob	of Behaviour: Neuron and its fo ion: Senses: Vision; audition; ular and monocular cues; Illu erant conditioning; Punishmen esses and techniques of impr	unction; Cent smell; taste a sions and ex t and its effect oving memo

Language development; Language and cognition; Language: concept of cognition; Problem sorving; Sudgment and accision making; Language development; Language and cognition; Language and culture; Intelligence and Creativity: Concept of intelligence; Theories of intelligence; Assessment of intelligence Mental retardation; Concept of creativity and its stages; Motivation and Emotion: Introduction to motivation; Factors affecting motivation; Introduction to emotions; Types of emotions; Physiological changes during Emotions (Neural; Cardiac; Visceral; Glandular); Theories of emotion; Social Thinking and Social Influence: Definition and nature of thinking; Tools of thinking; kinds of thinking; Social facilitation; Attribution theory; Crowd behaviour; Conformity; Obedience; Helping behaviour

Recommended Books

- 1. Atkinson R. C., & Smith E. E. Introduction to psychology(13thed.). Harcourt Brace College Publishers, (Latest Edition)
- 2. Fernald, L.D., & Fernald, P.S. Introduction to psychology. USA: WMC Brown Publishers, (Latest Edition)
- 3. Glassman, W. E. Approaches to psychology. Open University Press (Latest Edition)
- 4. Hayes, N. Foundation of psychology Thomson Learning. Lahey, B. B. Psychology: An introduction McGraw-Hill Companies, Inc. (Latest Edition)
- 5. Coon, D., & Mutterer, J. Introduction to psychology: Gateways to mind and behavior Wadsworth Cengage Learning (Latest Edition)
- 6. Fredrickson, B., Nolen-Hoeksema, S.,Loftus, G., &Wagenaar, W. Atkinson & Hilgard's introduction to psychology USA: Wadsworth (Latest Edition)
- 7. Kalat, J. W. Introduction to psychology. USA: Cengage Learning, Inc. (Latest Edition)

- 8. Lahey, B. B. Psychology: An introduction UK: McGraw-Hill Companies, Inc. (Latest Edition)
- 9. Leahey, T. H. A history of psychology: Main currents in psychological thought. New Jersey: Prentice-Hall International, Inc, (Latest Edition)

Course Content 8.61 Fundamentals of Economics

COURSE TITLE (BIM-121) Fundamentals of Economics	CREDITS HOURS (3+0) 48 Theory + 0 Lab Sessions	KNOWLEDGE AREA/ DOMA Management Science Electi	
	After course completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Estimate the depreciation of an asset using standard depreciation techniques to assess its impact on present or future value.	C-2	2
CLO-2	Predict the cost effectiveness of individual projects using the methods learnt, and the effects of inflation on economic analysis of engineering projects.	C-3	11
CLO-3	Analyze the appropriate engineering technology economics analysis method(s) for problem solving i.e., present worth, annual cost, rate of return, payback, break-even and benefit-cost ratios.	C-4	2
	Course Outline for Theory		
of money; cash flow ser	ogical economy defined Types of Business organizations; financial statemer ies and its types; basic cost concepts. Profit and interest; discrete and conti Economic analysis of alternatives; Alternatives having identical lives; Altern	nuous compounding; nor	ninal and

AW; FW; Cost-benefit analysis and rate of return analysis; Break-even and payback analysis. Use of spreadsheets for economic analysis; economic effects of inflation. Replacement and retention decisions Depreciation, amortization and depletion of economic resources. Price; Supply and Demand Relationship. Project financing. Factors of production; Capital budgeting; economic analysis in the service sector.

Recommended Books

- 1. Technological Economics by Shoubo Xu (Springer), (Latest Edition)
- 2. Engineering Economy, Latest Edition, Leland T. Blank and Anthony J. Tarquin, McGraw Hill, (Latest Edition)
- 3. Contemporary Engineering Economics, Latest edition, Chan S Part Pearson Prentice Hall (Latest Edition)
- 4. Engineering Economic Analysis by Donal G. Newnan, Jerome P. Lavelle, Ted G. Eschenbach, 12th edition, Oxford University Press, (or Latest Edition)

Course Content

COURSE TITLE	CREDIT HOURS	KNOWLEDGE AREA/ DOMAIN Management Science Elec	
(BIM-221)	(3+0)		
Entrepreneurship	48 Theory + 0 Lab Sessions		
	After course completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Understand entrepreneurship concept as a whole and the role of entrepreneurship in economic development.	A-3	7
CLO-2	Compare the role and importance of the small and medium sized enterprises in the economy.	A-4	6
CLO-3	Find an attractive market and apply the understanding of business planning concept for new business creation and growth.	A-3	12
	Course Outline for Theory		
The concept of entre	epreneurship; the economist view of entrepreneurship; the sociologis	t view; Behavioral app	proach;
Entrepreneurship and N	Nanagement. The process of entrepreneurship; Entrepreneurial Managemen	t; The entrepreneurial bu	isiness;
Entrepreneurship in se	rvice institutions; the new venture. Innovation concepts; Importance of in	novation for entreprene	urship;
Sources of innovative o	pportunities; the innovation process; Risks involved in innovation. Entreprer	eurial profile; Trait appro	oach to
understanding entrepr	eneurship; Factors influencing entrepreneurship; the environment; Socio cu	Itural factors; Support sy	/stems.
Teamwork; Networking	organization; Motivation and compensation; Value system. Defining SMEs; S	Scope of SMEs; Entreprer	neurial;
managers of SME; Fin	ancial and marketing problems of SMEs; Framework for developing entre	preneurial marketing; D	evising
entrepreneurial marke	ting plan; Entrepreneurial marketing strategies; Product quality and desig	n; Role of entrepreneur	in the
economic developmen	t generation of services; Employment creation and training; Ideas; knowled	dge and skill developme	nt; The

- 1. Technology Ventures: From Idea to Enterprise by Thomas Byers, Richard Dorf, Andrew Nelson, 4th Edition, McGraw Hill (Latest Edition)
- 2. Paul Burns and Jim Dew Hurst: "Small Business and Entrepreneurship", Palgrave Macmillan Publishing Company, Second Edition (Latest Edition)
- 3. Peter F. Drucker: "Innovation and Entrepreneurship", Harper Business, Reprint Edition (Latest Edition)
- 4. The Startup Owner's Manual: The Step-By-Step Guide for Building a Great Company by Steve Blank, Bob Dorf, K & S Ranch, (Latest Edition)
- 5. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses by Eric Ries, Penguin Books (Latest Edition)
- 6. John B. Miner, "Entrepreneurial Success", Berrett-Koehler Publishers, (Latest Edition)

Course Content

	8.63 Project Management	1	
COURSE TITLE	CREDIT HOURS	KNOWLEDGE	
(BIM-411)	(3+0)	AREA/DOMAI	
Project Management	48 Theory + 0 Lab Sessions	Management Science	Elective
	After course completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Describe and understand the basic concepts of management with a special focus on project management.	A-1	11
CLO-2	Demonstrate competency in various project management knowledge areas, project scheduling and controlling techniques including Critical Path Method and Earned Value Management.	A-3	11
CLO-3	Use computers in Project Management, especially a tool like MS Project & Primavera etc.	C-3	5
	Course Outline for Theory		
 Project Quality Mana quality management Project Stakeholder competencies of pro Project Cost estimati cycle cost, cost scheo budgets and estimate Project Risk Manager process. Project Time Manager activities, and critical Project Closure: Project termination process. 	ject characteristics, project constraints, project organization structure. agement: History of Quality Management, Defining Quality, relationship b Quality Management Frameworks Management: The roles of project manager and project sponsor, Pre ect manager, building and managing successful project teams, stakeholder ng and Budgeting: Cost components and methods for cost estimation in pr luling and forecasting, project resource allocation and levelling, Estimation es, earned value management. nent: Defining risk and uncertainty, business and project risk, probability ar ement: Introduction to project scheduling, Critical Path Method, Network path, project Gantt chart. ect evaluation, project and project management success, success criteria for tool: Introduction and use of project management tools like MS project and	roject team selection, s management. ojects, cost control in pro of outstanding work, ele ad impact of risk, risk man representation of project or projects, project audit	kills and jects, life ments of agement s, critical
	Recommended Books		
			<u>, </u>
-	ect Management Body of Knowledge (PMBOK Guide), Project Managemen nt: A Systems Approach – A Book Review, Harold Kerzner, ISBN-10: 11180		

Curriculum for Bachelor of Biomedical Engineering Technology

Course Content

COURSE TITLE (BIM-412) Principles of	CREDIT HOURS (3+0) 48 Theory + 0 Lab Sessions	KNOWLEDGE AREA/DOMAIN Management Science Elective	
Marketing	After course completion students will be able to:	Bloom's Taxonomy Level	PLO
CLO-1	Understand marketing philosophies and marketing environment.	C-2	1
CLO-2	Apply marketing mix techniques to manage business efficiently and effectively.	C-3	12
	Course Outline for Theory		
strategy, preparing r marketing effort. Understanding Marl research, analysing a	Course Outline for Theory rketing: What is Marketing, understanding marketplace and customer new marketing plan and capturing customer value, changing landscape of marketi ket and Customer: Microenvironment, Macro environment, developing m and using market information, Models of Consumer Behaviour, Factors Influe Buying Process	ng. Marketing Mix and n arketing information, m	nanagin narketir
strategy, preparing r marketing effort. Understanding Marl research, analysing a Decision, Consumer Making Product the classification and Bra Pricing – understand strategy and price ad Marketing Channel - retailing and whole s Promotion – Comm	rketing: What is Marketing, understanding marketplace and customer new marketing plan and capturing customer value, changing landscape of marketi ket and Customer: Microenvironment, Macro environment, developing m and using market information, Models of Consumer Behaviour, Factors Influe Buying Process e Brand- creating value: What is product, Service and Experience, Produc anding Strategy, product life cycle and new product development process? ding and capturing value: What is price, pricing strategies, new product pric djustment strategy? – delivering customer value: Supply chain and value delivery network, Types	ing. Marketing Mix and n narketing information, m encing Consumer, Types o t line and Product mix, ting strategy, product mi of channels, Decision of munication, effective m	nanagin narketir of Buyir produ ix pricir channe narketir
strategy, preparing r marketing effort. Understanding Marl research, analysing a Decision, Consumer Making Product the classification and Bra Pricing – understand strategy and price ac Marketing Channel - retailing and whole s Promotion – Comm communication, soc and sales promotion	rketing: What is Marketing, understanding marketplace and customer new marketing plan and capturing customer value, changing landscape of marketi ket and Customer: Microenvironment, Macro environment, developing m and using market information, Models of Consumer Behaviour, Factors Influe Buying Process e Brand- creating value: What is product, Service and Experience, Product anding Strategy, product life cycle and new product development process? ding and capturing value: What is price, pricing strategies, new product price djustment strategy? – delivering customer value: Supply chain and value delivery network, Types selling. unicating customer value: The promotion mix, integrated marketing com ially responsible communication, advertising and public relations, personal se	ing. Marketing Mix and n narketing information, m encing Consumer, Types of t line and Product mix, sing strategy, product mi of channels, Decision of enunication, effective m elling and personal selling	nanagin narketin of Buyin produc ix pricin channe narketin

2. Marketing: Principles and Strategies Hardcover by Charles D. Schewe, (Latest Edition)

9. Supervised Industrial Training

9.1 Background

Supervised Industrial Training refers to students supervised hands-on experience in an environment where engineering is practiced, familiarizing them with professional engineering work prior to graduation. The training curriculum consists of minimum 16 weeks of continuous industrial training, comprised of 8 hours per day, 5 working days per week. A Bachelor of Engineering Technology student shall undergo mandatory SIT during the 8th semester (16 weeks), or 7th and 8th semesters (16 weeks mandatory and 16 weeks in 7th semester optional), after he/ she has passed all subjects up to the 6th semester.

SIT covers a range of activities, such as design implementation, production processes, laboratory experiments, on-site field works and maintenance. It also serves as a mechanism to integrate engineering practices and the curriculum to achieve Program Learning Outcomes that cover Engineering Technologists Graduate Attributes in line with the Sydney Accord. While SIT provides practical exposure to engineering processes and helps develop professional skills required for an Engineering Technologist, it also offers an opportunity to prospective employers to assess potential skills of a future employee.

9.2 Objectives:

Through the SIT, students will:

- a. Learn to apply engineering technology knowledge learned in classroom environment in real industrial situations.
- b. Be provided exposure to professional practices in the industries.
- c. Understand the role and responsibilities and code of ethics that Engineering Technologists should uphold.
- d. Develop awareness about general workplace behavior and build interpersonal skills.
- e. Maintain professional work records and reports.
- f. Learn to write reports and network with probable future employers to increase employability.

9.3 Responsibility of HEI: Placement in SIT Program

During 7th (Optional) and 8th semester, Bachelor of Biomedical Engineering Technology students will be undergoing continuous SIT of 16 (or 32) weeks. This training shall be arranged by HEIs in leading industry, and preferably should sign an MoU for the SIT. A designated Administrator/Coordinator of HEI shall complete all necessary documentation, preferably 12 weeks prior to the commencement of the training, and issue Training Schedule for 16 (or 32) weeks so that all stakeholders and the students are aware and assured of undergoing SIT training in 7th (optional) and 8th semester according to a scheduled timeline.

9.4 Responsibilities of Students:

- a. Bachelor of Engineering Technology students shall get enrolled for SIT during the 6th semester and before commencement of 7th semester.
- Students shall have to undergo continuous training of 16 (or 32) credit hours. One week's training of 8 hours daily for 5 days (40 contact hours) will be counted as 1 credit hour. Accordingly, 16 weeks (One semester) will help earn students 16 credit hours.
- c. Total contact hours per semester are: 16 weeks per semester x 5 working days per week x 8 hours per day = 640. If an HEI opts SIT in 2 semesters (7th and 8th), these credit hours and contact hours will be doubled.
- d. Students will maintain a daily Logbook, signed by the SIT supervisor at site, Training Administrator appointed by HEI and the student.
- e. Students must observe safety & security rules of the Organization where they receive Training.
- f. Students must wear specified working dress during training.
- g. Students must obey all rules and regulations of the organization.
- h. Students must observe working timings of the training Organization. Students may be allowed 10 days leave during Training period of 16 (or 32) for genuine reasons. The leave shall only be used to cater for emergency/s, with prior sanction from the training Administrator/Coordinator.
- i. Leave will be deducted from training hours and required to be made up later.
- j. Unsanctioned leaves shall be treated as "absent", and liable to disciplinary action.
- k. Public holidays and leaves should not be counted as working hours.

9.5 Training Progress Assessment and Review by HEI

Every HEI should appoint a focal person as SIT Administrator/Coordinator for each program who will monitor progress randomly through site visits, phone calls or emails to the industrial organization's counter-part focal person. Progress reports will be maintained after coordination with training supervisor(s) as well as the students.

The purpose of monitoring of SIT by Training Administrator/Coordinator are:

- a. To ensure the training organization is providing suitable and appropriate training to students.
- b. To obtain feedback on students' performance and training progress through discussion with training supervisor(s).
- c. To make courtesy visits and establish industrial relations between the HEI and the industries where students will receive their SIT.
- d. To discuss the possibility of students' job placement with the training organization.
- e. To survey new industries as potential training placement locations in the future.

9.6 Changing Student Placement During SIT

- a. Students are discouraged to change placement during the training period from one organization to another.
- b. However, written permission may be granted by the training Administrator/Coordinator, if new placement of the student is available and confirmed in another organization, provided the student does not suffer loss of training hours due to this changeover.
- c. After getting written permission from the Training Administrator/Coordinator, a fresh approval should be applied for the new placement.

9.7 Daily Training Logbook

All training activities must be recorded on daily basis in the Training Logbook [See Appendix F]. Students must get it signed, on daily basis, by on-the-job Trainer. The Training logbook must reflect:

- a. The student's learning experience during the industrial training
- b. Training records and evidence of supervised training, with evidence of participation of student, on- the-job Trainer and HEI's training Administrator/Coordinator.
- c. Part of professional practice in engineering profession where incidence and evidence are properly documented.
- d. Information that becomes a source of reference in preparing the Industrial Training Report.
- e. The Logbook must be submitted along with the Industrial Training Report.

9.8 Industrial Training Report

An Industrial Training Report will be submitted upon completion of SIT. The Report must describe student's learning and development in technical knowledge, engineering practices and professional skills acquired through practical experience. The Industrial Training Report should also reflect student's ability in communication skills and understanding of engineering practices. Students should seek advice from their on-the-job Trainer on site, to ensure that no confidential materials are included in the report. The report shall be submitted to the Training Administrator. The student may present a copy of the report to the prospective employer. Any references made in preparation of the report should be recognized using standard referencing formats. Students should refer to the Industrial Training Report Template as provided [See Appendix G] and guidelines given below in preparing the Report. The Daily Training Logbook should be submitted together with the Report.

9.9 Guidelines for Preparation of Industrial Training Report

Under the guidance of supervisors, students need to properly document their experience and learning during the SIT in form of an Industrial Training Report. A properly prepared Report can portray their practical experience precisely in an orderly manner. The Report must be prepared according to the format and the guidelines below:

9.9.1 Contents of Industrial Training Report

(a) Table of Contents

This section of the report shall consist of:

- i. Headings
- ii. Sub-headings
- iii. Page numbers

Every appendix requires a title, and each page needs to be numbered accordingly.

(b) Background & Profile of the Training Organization

Brief and concise description of the organization in which the student is undertaking the SIT. The main items are:

- i. Backgrounds/profile of the organization
- ii. Vision and Mission
- iii. Organogram.
- iv. Title and position of the supervisor in charge
- v. Other necessary information only (not more than three pages)

(c) Schedule of Duties Performed as Trainee

This section briefly describes the time, duration and types of duties performed during the training. The description must follow the schedule of the training, i.e., in chronological order (for 16/32 weeks). The days when the student was not on duty must be properly recorded with cogent reasons.

(d) Experience During SIT

In this section, the student must describe fully the industrial training experience gained. Some suggested areas include:

- i. Project (s) carried out, if any.
- ii. Supervisory works
- iii. Problems encountered
- iv. Problems solving process or approach
- v. Hands-on skills acquired.
- vi. How productivity can be further enhanced.
- vii. Quality Management system in place.
- viii. Safety at work.

(e) Conclusion

Students provide an overall assessment in this section and arrive at a conclusion with regards to the SIT undergone. Content may include:

- i. Major works performed during SIT
- ii. Different modules of SIT
- iii. Comments whether SIT met the training objectives
- iv. Suggestions and recommendations for improvement of the SIT

(f) References

A complete list of the references used in the report must be included according to standard referencing format.

(g) Appendixes

Appendixes are additional information appended to support the main text of the Report. A copy of the letter of permission from the Training Organization must be attached as an appendix. Other suggested appendixes are:

- i. Investigation and project report during SIT
- ii. Technical drawings, so far these are not secret documents or proprietary etc.
- iii. Any other document that adds to the Report

(h) Figures and Tables

All figures, tables and similar content must be captioned, labeled, and mentioned in the main text of the Report.

(i) Notations, Symbols & Acronyms

If the report contains notations, symbols, and acronyms, these must be defined before they first appear in the main text. It is good practice to put list of notations, symbols, and acronyms on a separate page, appropriately titled, and placed after 'Tables of Contents' page.

Every appendix must have a title and be mentioned in the main text of the Report. All page numbers for appendixes must be in continuation of page numbers of the main Report.

9.9.2 Format of the Report

(a) General

- i. Students are advised to start writing the SIT Report as soon as training commences to ensure timely completion and submission.
- ii. Do not include irrelevant materials, e.g., brochures from the organizations, or any publicity materials in the report.
- iii. The Report must be typewritten on plain white A4 size paper, with 12-point Times New Roman font type and line spacing of 1.5.

(b) Abstract or Preface

The Report should start with an abstract of maximum 2 pages, and should briefly describe:

- i. Description of Organization providing SIT
- ii. Summary of the Report
- iii. Acknowledgements

9.10 SIT Assessment

Assessment of the SIT should be based on the following parameters:

i.	On-the-Job Trainer Report	(20% marks)
ii.	Training Advisor Report through visits or survey	(10% marks)
iii.	Industrial Training Report	(50% marks)
iv.	Viva voce	(20% marks)

It is also be noted that:

- i. Minimum 50% marks are required to pass the SIT.
- ii. Students are advised to be diligent in writing their Report.

- iii. The Report must be of good quality and portray in full the industrial experience and knowledge gained.
- iv. The Report should not be in the form of short notes and figurative form.
- v. If the Report is not satisfactory, students shall rewrite the Report until it is deemed satisfactory.

9.11 Completion of Industrial Training

- i. Upon completion of a 16- or 32-week continuous SIT, a Confirmation Letter to this effect must be obtained from the training organization and/or probable employer.
- ii. The Confirmation Letter must be submitted to the Industrial Training Administrator/Coordinator, together with the (1) On-the-Job Trainer's Report, (2) Student Feedback Form, and (3) Industrial Training Report for grading.

APPENDIX A: Sydney Accord Knowledge and Attitude Profile

(Retrieved from <u>www.ieagreements.org</u>)

A Sydney Accord program provides:

SK1: A systematic, theory-based understanding of the natural sciences applicable to the sub-discipline and awareness of relevant social sciences.

SK2: Conceptually based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed consideration and use of models applicable to the sub-discipline.

SK3: A systematic, theory-based formulation of engineering fundamentals required in an accepted sub-discipline.

SK4: Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for an accepted sub-discipline.

SK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations using the technologies of a practice area.

SK6: Knowledge of engineering technologies applicable in the sub-discipline.

SK7: Knowledge of the role of technology in society and identified issues in applying engineering technology, such as public safety and sustainable development (represented by the 17 UN-SDGs).

SK8: Engagement with the current technological literature of the discipline and awareness of the power of critical thinking.

SK9: Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

APPENDIX B: Engineering Technologist Graduate Attribute Profile

(Retrieved from www.ieagreements.org)

As per Sydney Accord, Engineering Technologist Graduate is expected to have the following attributes:

Engineering Technology Knowledge:

SA1: An ability to apply knowledge of mathematics, natural science, Engineering Technology fundamentals and Engineering Technology specialization to defined and applied Engineering Technology procedures, processes, systems, or methodologies.

Problem Analysis

SA2: An ability to Identify, formulate, research literature and analyze Broadly Defined Engineering Technology problems reaching substantiated conclusions using analytical tools appropriate to the discipline or area of specialization.

Design/Development of Solutions

SA3: An ability to design solutions for broadly- defined Engineering Technology problems and contribute to the design of systems, components, or processes to meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

Investigation

SA4: An ability to conduct investigations of broadly defined problems; locate, search and select relevant data from codes, data bases and literature, design and conduct experiments to provide valid conclusions.

Modern Tool Usage

SA5: An ability to Select and apply appropriate techniques, resources, and modern technology and IT tools, including prediction and modelling, to Broadly Defined Engineering Technology problems, with an understanding of the limitations.

The Engineering Technologist and Society

SA6: An ability to demonstrate understanding of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to Engineering Technology practice and solutions to broadly defined Engineering Technology problems.

Environment and Sustainability

SA7: An ability to understand and evaluate the sustainability and impact of Engineering Technology work in the solution of broadly defined Engineering Technology problems in societal and environmental contexts.

Ethics:

SA8: Understand and commit to professional ethics and responsibilities and norms of Engineering Technology practice.

Curriculum for Bachelor of Biomedical Engineering Technology

Individual and Teamwork

SA9: An ability to Function effectively as an individual, and as a member or leader in diverse teams.

Communication

SA10: An ability to communicate effectively on broadly defined Engineering Technology activities with the Engineering Technologist community and with society at large, by being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Project Management

SA11: An ability to demonstrate knowledge and understanding of Engineering Technology management principles and apply these to one's own work, as a member or leader in a team and to manage projects in multidisciplinary environments.

Lifelong Learning:

SA12: An ability to recognize the need for and have the ability to engage in independent and life-long learning in specialist Engineering Technologies.

APPENDIX C: Engineering Technologist Professional Competence Profile

(Retrieved from <u>www.ieagreements.org</u>)

As per Sydney Accord, Engineering Technologist Graduate is expected to demonstrate the following competencies:

Comprehend and apply universal knowledge:

TC1: Comprehend and apply the knowledge embodied in widely accepted and applied procedures, processes, systems, or methodologies.

Comprehend and apply local knowledge:

TC2: Comprehend and apply the knowledge embodied procedures, processes, systems, or methodologies that is specific to the jurisdiction of practice.

Problem analysis:

TC3: Identify, clarify, and analyze broadly defined problems using the support of computing and information technologies where applicable.

Design and development of solutions:

TC4: Design or develop solutions to broadly defined problems considering a variety of perspectives.

Evaluation:

TC5: Evaluate the outcomes and impacts of broadly defined activities.

Protection of society:

TC6: Recognize the foreseeable economic, social, and environmental effects of broadly defined activities and seek to achieve sustainable outcomes (represented by the 17 UN-SDGs).

Legal, regulatory, and cultural:

TC7: Meet all legal, regulatory, and cultural requirements and protect public health and safety during all activities.

Ethics:

TC8: Conduct activities ethically

Manage engineering activities:

TC9: Manage part or all of one or more broadly defined activities.

Communication and Collaboration:

TC10: Communicate and collaborate using multiple media clearly and inclusively with a broad range of stakeholders during all activities.

Curriculum for Bachelor of Biomedical Engineering Technology

Continuing Professional Development (CPD) and Lifelong learning:

TC11: Undertake CPD activities to maintain and extend competences and enhance the ability to adapt to emerging technologies and the ever-changing nature of work.

Judgement:

TC12: Choose appropriate technologies to deal with broadly defined problems. Exercise sound judgement in the course of all broadly defined activities.

Responsibility for decisions:

TC13: Be responsible for making decisions on part or all of one or more broadly defined activities.

APPENDIX D: Minutes of Preliminary Meeting of NCRC

- 1. Preliminary meeting of National Curriculum Review Committee (NCRC) in the discipline of Biomedical Engineering Technology for bachelor's degree program was held on 14-03-2022 to 16-03-2022 for 3 days at the Superior University, Lahore.
- 2. The meeting started with recitation from the Holy Quran by Engr. Prof. Dr. Yaseer Arafat Durrani. The NTC representative, Mr. Hafiz Ghulam Muhammad, welcomed the members and thanked them for attending the meeting, and briefed about the NTC expectations from Committee. All the participants introduced themselves highlighting their qualifications, experience, and areas of the expertise. Mr. Hafiz Ghulam Muhammad offered the house to nominate the Convener, Co-Convener and Secretary of the CDC of the Biomedical Engineering Technology. Engr. Prof. Dr. Yaseer Arafat Durrani, Engr. Dr. Ali Raza Jafri, and Engr. Dr. Tasleem Kausar were selected unanimously as Convener, Co-Convener and Secretary, respectively.
- 3. The Convener Prof. Dr. Yaseer Arafat Durrani, in consultation with the Committee members, distributed the knowledge area-wise courses among the sub-committees keeping in view the experience and expertise in the field. The following Core Committee, along with the four sub-committees were constituted with their separate Conveners and Secretaries to finalize the contents of their respective knowledge area courses. Dr. Ali Raza Jafri as Co-Convener, briefed each Sub-Committee members about the relevant tasks to be completed for contents of their respective knowledge area courses.

S.No	NCRC Members	Role
1.	Prof. Dr. Yaseer Arafat Durrani Professor Chairman, Electronics Engineering & Biomedical Engineering Technology Department, UET, Taxila	Convener
2.	Prof. Dr. Ali Raza Jafri Professor Chairman, Biomedical Engineering Department NED UET, Karachi	Co-Convener
3.	Dr. Tasleem Kausar Assistant professor HoD, Department of Mirpur Institute of Technology, MUST Mirpur, AJ&K	Secretary
4.	Dr. Amjad Ali Associate Professor Chairman, Electrical Engineering Department UET Peshawar Jalozai Campus	Member
5.	Dr. Abdul Rauf Anwar Associate Professor Chairman, Biomedical Engineering Department UET, Lahore, New Campus	Member
6.	Dr. Nida Iqbal Associate Professor Biomedical Engineering Department, New Campus UET, Lahore	Member
7.	Dr. Ishtiaq Ahmad Associate Professor Electrical Engineering Department University of Lahore (UoL), Lahore	Member

Curriculum for Bachelor of Biomedical Engineering Technology

	Dr. Nabeel Ali Khan	
8.	Professor	Member
٥.	HoD, Engineering Technology Department Foundation University, Islamabad	Member
	Dr. Muhammad Asim Waris	
9.	Assistant Professor	Member
9.	HoD, Biomedical Engineering & Sciences, NUST, Islamabad	Wender
	Dr. Saif ur Rehman	
10.	Assistant Professor	Member
	Department of Electrical Engineering, Superior University, Lahore	
	Dr. Adnan Yousaf	
11.	Assistant Professor	Coopted
	HoD, Department of Electrical Engineering, Superior University, Lahore	Member
	Dr. Rao Muhammad Asif	
	Assistant Professor	
12.	Program Incharge Biomedical Engineering Technology Department	Member
	Superior University, Lahore	
	Dr. Muhammad Umer Faroog	
13.	Assistant Professor	Member
	HoD, Mechanical Engineering Department KFUEIT, Rahim Yar Khan	
	Dr. Asjad Amin	
14.	Associate Professor	Member
	Information and Communication Engineering Islamia University of Bahawalpur (IUB)	
	Dr. Abdul Mannan	
1 Г	Assistant Professor	Member
15.	Head, Biomedical Engineering Technology, NFC Institute of Engineering & Technology,	Weilibei
	Multan	
	Dr. Yousaf Khan	
16.	Associate Professor	Member
	HoD, Electrical Engineering Department, Kohat Campus, UET, Peshawar	
	Dr. Saad Jawaid Khan	
15.	Associate Professor	Member
	Chairperson, Biomedical Engineering Department Ziauddin University, Karachi	
	Dr. Surat Khan	
16.	Professor	Member
	Chairperson, Electrical Engineering Department, BUITEMS, Quetta	
	Dr. Sumaira Irum Khan	
17.	Assistant Professor	Member
	Department of Pharmacy, MUST, AJK	
	Hafiz Ghulam Muhammad	
18.	Admin & Account Officer	NTC Rep.
	National Technology Council	

4. After taking charge by the nominated Committee, Convener, Engr. Prof. Dr. Yaseer Arafat Durrani chaired the meeting and emphasized to ensure the reflection of Sydney Accord in curriculum and course

titles as well as to develop curriculum that provides a unified framework for offering degrees under the title of Biomedical Engineering Technology.

- 5. In continuation of above guidelines, Prof. Dr. Ali Raza Jafri, Co-Convener, Dr. Tasleem Kausar, Co-Secretary highlighted the objectives of curriculum development.
- 6. Agreed upon objectives were categorized and assigned to Subcommittees, where Honorable Members reviewed, discussed, and submitted the following resolutions:
 - Develop an undergraduate curriculum of Biomedical Engineering Technology which is at par with international standards and in substantial conformity with the Sydney Accord.
 - Clearly define program education objective (PEOs), course learning outcomes (CLOs) with Bloom's Taxonomy levels, and course contents aligned with program learning outcomes (PLOs).
 - Incorporate latest relevant reading materials/ references.
 - Ensure that course content that is uniform across other disciplines (HEC's Gen Ed requirements) is not duplicated.
 - Curriculum must be futuristic, and answer needs of society.
- 7. In the next session, members discussed the nomenclature of the discipline, preface, objectives of the programs, PLOs, methods of instruction and learning environment, assessment, and operational framework.
- 8. After long deliberations, the Committee proposed the curriculum framework, the duration of the program, number of semesters, number of weeks per semester, total number of credit hours, weightage of technology domain and non-technology domain courses and weightage of theory and practical of undergraduate 4-years program in Biomedical Engineering Technology.
- 9. Furthermore, list of courses (core and elective) and semester wise breakup of courses were also discussed and finalized.
- 10. Admission/intake criteria was discussed and adopted as defined in NTC Accreditation Manual.
- 11. Supervised industrial training (SIT) was discussed in detail. There was a consensus that SIT will be mandatory for 8th Semester.
- 12. Those HEI's that can provide only one semester of SIT (in 8th), shall offer optional courses instead of SIT in the 7th semester to cover credit hours and other requirements.
- 13. HEI's that are geared to provide SIT in two semesters can do this in 7th and 8th Semesters.
- 14. In line with the experience and expertise of NCRC members, list of courses of various domains were distributed among the Sub-Committees.
- 15. These Committees were assigned responsibility for reviewing course objectives, adding course learning outcomes, appropriate mapping with taxonomy and PLOs, updating list of contents, adding teaching-learning methods and assessment, and updating bibliography/ references/ suggested books.
- 16. The following Core Committee's, along with four Sub-Committees, were constituted with separate Convenors and Secretaries:

Biomedical Engineering Technology Core Committee				
S. No.	Name	Role		
1	Prof. Dr. Yaseer Arafat Durrani	Convener		
2	Prof. Dr. Ali Raza Jafri	Co-convener		
3	Dr. Tasleem Kausar	Secretary		
	1. Subcommittee: Biomedical Engineering Technology Computing	, Management &		
	Social Sciences			
S. No.	Name	Role		
1	Dr. Yousaf Khan	Convener		
2	Dr. Abdul Mannan	Secretary		
3	Dr. Adnan Yousaf	Member		
	2. Subcommittee: Biomedical Engineering Technology For	undation		
S. No.	Name	Role		
1	Dr. Amjad Ali	Convener		
2	Dr. Sumaira Irum Khan	Secretary		
3	Dr. Surat Khan	Member		
5	Dr. Rao Muhammad Asif	Member		
6	Dr. Saif ur Rehman	Member		
	3. Subcommittee: Biomedical Engineering Technology B	readth		
S. No.	Name	Role		
1	Dr. Abdul Rauf Anwar	Convener		
2	Dr. Muhammad Umar Farooq	Secretary		
3	Dr. Nida Iqbal	Member		
4	Dr. Asjad Amin	Member		
5	Prof. Dr. Ali Raza Jafri	Member		
	4. Subcommittee: Biomedical Engineering Technology	Depth		
S. No.	Name	Role		
1	Dr. Muhammad AsimWaris	Convener		
2	Dr. Tasleem Kausar	Secretary		
3	Prof. Dr. Yaseer Arafat Durrani	Member		
4	Dr. Saad Jawaid Khan	Member		
5	Dr. Ishtiaq Ahmad	Member		
6	Prof. Dr. Nabeel Ali Khan	Member		

- 17. After conclusion of the Preliminary Meeting, the Sub-Committees submitted the proposed course contents for theory and practicals, along with CLOs, list of recommended books, list of experiments and relevant information of each course.
- 18. The first draft was compiled by the Engr. Dr. Tasleem Kausar, Secretary NCRC, and distributed to Members for review.
- 19. Preliminary curriculum draft was submitted to NTC and sent to international reviewers.

APPENDIX E: Minutes of the Final Meeting of NCRC

- 1. The second meeting of the NCRC in the discipline of Biomedical Engineering technology for the bachelor's degree program was held on 08-06-2022 to 10-06-2022 for 03 days at the University of Engineering & Technology, Taxila.
- 2. The inauguration session was started with recitation of Holy Quran, and chaired by Honorable Vice Chancellor UET, Taxila. He appreciated the efforts by Members, and highlighted their valuable contribution for the national cause in setting standards for quality-education in Biomedical Engineering Technology.
- 3. The Chair also extended his gratitude to the entire team and briefed the objectives and arrangements for the second NCRC.
- 4. Mr. Muhammad Fahd Amin, Acting Registrar, NTC with Mr. Hafiz Ghulam Muhammad represented NTC.

S.No	NCRC Members	Role
1.	Prof. Dr. Yaseer Arafat Durrani Professor Chairman, Electronics Engineering & Biomedical Engineering Technology Department, UET, Taxila	Convener
2.	Prof. Dr. Ali Raza Jafri Professor Chairman, Biomedical Engineering Department NED UET, Karachi	Co-Convener
3.	Dr. Tasleem Kausar Assistant professor HoD, Department of Mirpur Institute of Technology, MUST Mirpur, AJ&K	Secretary
4.	Dr. Amjad Ali Associate Professor Chairman, Electrical Engineering Department UET Peshawar Jalozai Campus	Member
5.	Dr. Abdul Rauf Anwar Associate Professor Chairman, Biomedical Engineering Department UET, Lahore, New Campus	Member
6.	Dr. Nida Iqbal Associate Professor Biomedical Engineering Department, New Campus UET, Lahore	Member
7.	Dr. Ishtiaq Ahmad Associate Professor Electrical Engineering Department University of Lahore (UoL), Lahore	Member
8.	Dr. Nabeel Ali Khan Professor	Member

Curriculum for Bachelor of Biomedical Engineering Technology

	HoD, Engineering Technology Department Foundation University, Islamabad	
9.	Dr. Muhammad Asim Waris Assistant Professor HoD, Biomedical Engineering & Sciences, NUST, Islamabad	Member
10.	Dr. Saif ur Rehman Assistant Professor Department of Electrical Engineering, Superior University, Lahore	Member
11.	Dr. Adnan Yousaf Assistant Professor HoD, Department of Electrical Engineering, Superior University, Lahore	Coopted Member
12.	Dr. Rao Muhammad Asif Assistant Professor Program Incharge Biomedical Engineering Technology Department Superior University, Lahore	Member
13.	Dr. Muhammad Umer Farooq Assistant Professor HoD, Mechanical Engineering Department KFUEIT, Rahim Yar Khan	Member
14.	Dr. Asjad Amin Associate Professor Information and Communication Engineering Islamia University of Bahawalpur (IUB)	Member
15.	Dr. Abdul Mannan Assistant Professor Head, Biomedical Engineering Technology, NFC Institute of Engineering & Technology, Multan	Member
16.	Dr. Yousaf Khan Associate Professor HoD, Electrical Engineering Department, Kohat Campus, UET, Peshawar	Member
15.	Dr. Saad Jawaid Khan Associate Professor Chairperson, Biomedical Engineering Department Ziauddin University, Karachi	Member
16.	Dr. Surat Khan Professor Chairperson, Electrical Engineering Department, BUITEMS, Quetta	Member
17.	Dr. Sumaira Irum Khan Assistant Professor Department of Pharmacy, MUST, AJK	Member
18.	Hafiz Ghulam Muhammad Admin & Account Officer National Technology Council	NTC Rep.

6. Honorable Members were informed that valuable feedback was received from the following international experts:

Sr#	Foreign Expert Name	Affiliation
1	Dr. Hussain Rizvi	College of Engineering, University of Texas at Tyler, USA
2	Dr. Tauseef Gulrez	School of Computing, Science and Engineering, Salford Innovation Research Centre (SIRC), UK

- 7. After the introductory session, deliberations on the agenda of the second meeting formally commenced which was headed by Convener Engr. Prof. Dr. Yaseer Arafat Durrani, Co-Convener Prof. Dr. Ali Raza Jafri, Secretary Dr. Tasleem Kausar.
- 8. Honorable Members were informed that valuable feedback was received from the following international experts:
- 9. In this regard, international experts appreciated the efforts made by NCRC to compose a balanced and standardized curriculum for Biomedical Engineering Technology.
- 10. Various issues were thoroughly deliberated upon by Members of NCRC in Sub-Committees, and Honorable Members submitted the following resolutions:
 - Agreed upon curriculum preface, mission, vision, preamble, rationale, scope, course scheme etc.
 - Finalized bench marking of Recommended Scheme of Studies, Engineering Technology domain and non-Engineering technology domain courses in comparison with framework and list of Electives as defined earlier.
 - Approved the Semester-wise break-up of courses, credit hours allocations and Breadth and Depth courses.
 - Recommended sample course profiles and contents.
 - Recommend sample weekly lecture plan and laboratory work for Foundation and Breath courses.
- 11. The final draft was compiled by Convener Engr. Prof. Dr. Yaseer Arafat Durrani and member Engr. Dr. Amjad Ali.
- 12. After review by Members and with the approval of Convener Engr. Prof. Dr. Yaseer Arafat Durrani, Co-Convener Prof. Dr. Ali Raza Jafri it was submitted to NTC.

APPENDIX F: Supervised Industrial Training Logbook (Sample Format)

Personal Details:

Student Name: Student Roll Number: Address: Email:

Course of Study: Year/Semester of Study: Training Start Date: Training End Date:

Training Organization Details:

Name: Address: Contact Person: Contact Number: On-the job Trainer:

Daily Training Log

Please specify training information by descriptive statements, tables, sketches, figures, photographs, and so forth. Feel free to incorporate attachments wherever necessary.

Training Week: _____

Date	Time	Training Log

Declaration:

I, ______ with student roll number _____, do hereby declare that all information provided above is true and correct to the best of my knowledge.

Student signature with date

Supervisor signature with date

APPENDIX G: Supervised Industrial Training Report (Sample Format)

Sample table of content for Supervised Industrial Training Report is provided so that students know what is expected of them before submitting SIT Report. Students are encouraged to expand upon the content presented below. A declaration page validating originality of work, duly signed by the student and trainer must be attached at the beginning of the Report.

Chapter 1	Background of Training Organization	XX
Chapter 2	Schedule of Training and Duties as Trainee	XX
	2.1 Sub-heading	XX
	2.2 Sub-heading	XX
	2.3 Sub-heading	XX
Chapter 3	Working Experience	ХХ
	3.1 Projects carried out (as assigned by the on-the-job trainer)	XX
	3.2 Hands-on skills Acquired	XX
	3.3 Problems and Challenges Encountered	XX
	3.4 Problem Solving Process	XX
	3.5 Supervisory Tasks	XX
	3.6 Suggestions for Enhancing Productivity	XX
	3.7 Quality Management Systems in Place	ХХ
	3.8 Safety Features at Workplace	ХХ
	3.9 Additional sub-headings	ХХ
	3.10	XX
Chapter 4	Conclusion	хх
	References	XX
	Appendices	XX